

# ANNUAL WATER QUALITY REPORT Taunton River & Tributaries

Prepared by Zachary Donahue Project Manager Veolia North America January 30, 2023

## TABLE OF CONTENTS

| Description                      | Page No. |
|----------------------------------|----------|
| Taunton River Project            | 1        |
| Description of a Watershed       | 1        |
| Taunton River Watershed          | 1        |
| Veolia North America             | 1        |
| TRWA                             | 2        |
| Sampling Schedule                | 2        |
| Sampling Locations               | 2        |
| Monitoring Parameters            | 3        |
| Analytical Methods               | 5        |
| QA/QC Procedures                 | 6        |
| Results – Interpretation of Data | 6        |
| Conclusion                       | 9        |
|                                  |          |

Appendix A - Year 2023 Data Appendix B - Mill River Flow Data and Nutrient Loading

## TAUNTON RIVER AND TRIBUTARIES SAMPLING PROJECT

This is a collaborative monitoring project between Veolia Water and the Taunton River Watershed Alliance (TRWA). The purpose of this project is to develop baseline characterization data to measure changes in the watershed over time and to screen for water quality problems.

## A WATERSHED

A watershed is a geographic area in which all surface and groundwater flows downhill to a common point, such as a river, stream, pond, lake, wetland or estuary. Rain and melting snow drain into streams, tributaries, wetlands, lakes or seep into the ground. As the water runs off the land, sediment and dissolved materials are picked up. In natural areas, such as swamps and forests a filtering effect occurs and sediments and other materials are naturally removed from the water. Conversely, the rain and melted snow run quickly over paved areas and parking lots picking up pollutants and carrying them directly into the watershed.

## TAUNTON RIVER WATERSHED

The City of Taunton is located at the heart of the Taunton River Watershed. The water flows through many tributaries and streams such as the Three Mile River, Mill River, Snake River, and the Cobb Brook into the larger Taunton River, which then drains to Narragansett Bay. This watershed is 562 square miles and is the second largest watershed in Massachusetts. Its mainstem from Bridgewater to Fall River represents 40 miles of free-flowing water, the longest undammed coastal river in New England. In 2009 it was designated a federal Wild and Scenic River. It includes habitat for many plants and animals as well as the largest remaining wetland in the State, the Hockomock Swamp, at 16,800 acres, the largest natural lake in Massachusetts the Assawompsett Ponds and a major alewife run on the Taunton and Nemasket Rivers.

The Taunton River is designated as a Class B stream by the State of Massachusetts. This means that it meets the criteria as a habitat for fish, other aquatic life, and wildlife, and for primary and secondary contact recreation. Primary contact recreation includes wading, swimming, diving, surfing and water skiing. Secondary contact recreation includes fishing, boating and limited contact incident to shoreline activities.

## **VEOLIA NORTH AMERICA**

Veolia provides contract operation of water and wastewater treatment facilities and related systems. In 1998 Veolia Water (then known as "PSG") entered into a twenty-year contract with the City of Taunton to operate and maintain their wastewater treatment plant and manage and administer a pollution prevention program. The Pollution Prevention Program included collaborating with the TRWA on a watershed monitoring project. In August of 2006, the service

contract was expanded to include operation and maintenance of the sanitary sewer collection system. This contract is to run concurrently with the wastewater contract. In 2018 and again in 2023 the city chose to extend both contracts for an additional five years.

## <u>TRWA</u>

The TRWA is a volunteer organization dedicated to protecting and restoring the Taunton River Watershed. Its goals are keeping the watershed's rivers, ponds and streams aesthetically pleasing and useable for all recreational pursuits and restoring and keeping the drinking water clean and abundant. The TRWA has a team of volunteer samplers that collect water samples. Veolia Water Taunton receives the water samples, performs some laboratory analyses to monitor the quality of the water and forwards some samples to an outside contract laboratory, Microbac Laboratories, Inc. of Dayville, CT, for additional analysis.

#### SAMPLING SCHEDULE

Sampling is performed monthly from the months of April through October, on the second Tuesday, between the hours of 4:30 a.m. and 8:30 a.m. Monthly sampling was picked because it is frequent enough to include wet-weather events, dry spells, and temperature variations. The second Tuesday of the month was chosen because there are generally no national holidays celebrated on this day. Sampling has been eliminated during the winter months due to safety concerns, snow and ice on bridges, and because colder water has higher dissolved oxygen content and so the oxygen stress on the river is greatly reduced. Also, there is less microbial growth in colder water; therefore, bacteria counts are usually decreased. The samples are collected in the morning because during photosynthesis, which occurs in the daytime, plants release more oxygen than is used by respiration and decomposition, raising oxygen levels. However, at night, with no photosynthesis oxygen levels are depleted. By sampling in the early morning, water quality can be assessed during a time when the river would be under the greatest oxygen stress.

#### **SAMPLING LOCATIONS**

During 2023, twenty sites were sampled. Samples are taken close/from bridges, normally at public access, due to safety considerations and accessibility for parking. These sites were chosen to cover a representative area of the central Taunton River watershed's waterways as well as significant tributaries which affect the health and uses of the Taunton River watershed. The Taunton River is tidal (Class SB) up to Route 24 at the Raynham/Taunton line (just south of Route 44) – aquatic life including fish and wildlife migrate up and downstream. The better the water quality is throughout the watershed, the greater the aquatic life diversity. This equals greater ecological, recreational, and economic value of the Taunton River, Estuary, Mount Hope Bay, and greater Narragansett Bay.

| STREET/BRIDGE LOCATION                                 | RIVER                   | GPS Location              | ID                 |
|--------------------------------------------------------|-------------------------|---------------------------|--------------------|
| CENTER ST., BERKLEY BRIDGE                             | TAUNTON RIVER           | N41°50' 6.1/W71°06' 28.7  | TNT 01             |
| PLAIN ST., TAUNTON                                     | TAUNTON RIVER           | N41°53' 9.7/W71°05' 20.5  | TNT 02             |
| BEDFORD ST., RT. 18, BRIDGEWATER                       | TAUNTON RIVER           | N41°56' 12/W70°57' 56     | BED 01<br>(TNT 03) |
| CHERRY ST., BRIDGEWATER                                | TAUNTON RIVER           | N41°58' 42.3/W70°54' 44   | CHE 01<br>(TNT 04) |
| ROUTE 79, ASSONET R., BRIDGE                           | ASSONET RIVER           | N41°47' 37.9/W71°04' 3.6  | ASO 01             |
| SEGREGANSETT RIVER BRIDGE, BROOK<br>ST., DIGHTON       | SEGREGANSETT<br>RIVER   | N41°49' 32/W71°07' 37     | SEG                |
| CHICKAMUCKETSETT BROOK<br>BRIDGE, BERKLEY ST., BERKLEY | CHICKAMUCKSETT<br>BROOK | N41°49' 58.3/W71°06' 25   | BER 01             |
| SOMERSET AVE., ROUTE 138<br>TAUNTON                    | THREE MILE              | N41°51' 19.9/W71°06' 56   | TMR 01             |
| COHANNET ST., ROUTE 44<br>TAUNTON                      | THREE MILE              | N41°53' 11.4/W71°08'      | TMR 02             |
| CRANE ST., NORTON                                      | THREE MILE              | N41°56' 48.3/W71°09' 38   | TMR 03             |
| INGELL ST., TAUNTON                                    | MILL RIVER              | N41°58' 46/W71°04' 55.6   | MIL 01             |
| WASHINGTON ST., TAUNTON                                | MILL RIVER              | N41°54' 11.7/W71°05' 51   | MIL 02             |
| WHITTENDON ST., TAUNTON                                | MILL RIVER              | N41°55' 24/W71°06' 21.5   | MIL 03             |
| ROUTE 44, RAYNHAM                                      | FORGE RIVER             | N41°54' 18.3/W71°03' 35   | FORGE              |
| MIDDLEBOROUGH AVE., TAUNTON                            | COTLEY RIVER            | N41°53'/W71°01'28.4       | COT 01             |
| RIVER ST., RAYNHAM                                     | FURNACE BROOK           | N41°53' 35/W71°00' 04.7   | FBR 01             |
| CHURCH ST., RAYNHAM                                    | TAUNTON RIVER           | N41°53' 37/W71°00' 10.6   | CHU-01             |
| HAYWARD ST., BRIDGEWATER                               | TOWN RIVER              | N41°59' 51/W70°57' 13.2   | TWH 01             |
| HIGH ST., BRIDGEWATER                                  | MATFIELD RIVER          | N41°59' 58.1/W70°56' 16   | MAT 01             |
| MURDOCK ST., MIDDLEBORO                                | NEMASKET RIVER          | N41°56' 01.1/W70°55' 23.9 | NEM-01             |

#### **MONITORING PARAMETERS**

| Temperature<br>Dissolved Oxygen<br>pH | Total Phosphorus<br>Nitrate-Nitrogen | Enterococci Bacteria<br>Total Suspended Solids |
|---------------------------------------|--------------------------------------|------------------------------------------------|
|                                       |                                      |                                                |

**Temperature** – It is important because it determines how much oxygen the water can hold and the rate at which many biochemical reactions can occur. Warmer water will hold less oxygen. Aquatic organisms are dependent on certain temperature ranges for their optimal health. The temperature for a warm water fishery Class B stream should be <28.3 degrees Celsius. The exception is sites TNT-01 and TNT-02, which are Class SB. For those sites the temperature should be <29 degrees C and a maximum daily mean of <25.7 degrees C.

**DO** (Dissolved Oxygen) – The river system both produces and consumes oxygen. It gains oxygen from the atmosphere and from plants as a result of photosynthesis. Oxygen is consumed during respiration by aquatic animals, decomposition of organic matter, and various chemical reactions. Oxygen is measured in its dissolved form. If more DO is consumed than is produced, dissolved oxygen levels decline. The DO of a Class B river should be greater than 5.00 to support life.

pH – The pH measures the acidity or alkalinity of water on a scale of 1.0 – 14.0 with 7 being neutral. 1.0 would be the most acidic and 14.0 would be the most basic or alkaline. The acidity affects the rate of biochemical reactions in the water. The pH of a Class B stream should be 6.5 to 8.3. A pH outside of this range reduces diversity in the river because it stresses the physiological systems of most organisms and can reduce reproduction. Low pH may also allow toxic elements to precipitate out of solution and become available for uptake by aquatic plants and animals.

**Total phosphorus (Total P)** - Phosphorus occurs in water in several forms called phosphates. The test that we use to measure total phosphorus includes all of the forms of phosphates. Phosphates are necessary for biological growth, yet it is the nutrient that is in the shortest supply in most fresh waters. For this reason, it is referred to as a "limiting" nutrient (meaning it limits the amount of biological growth). A small increase in the level of phosphorus may result in an undesirable chain of events including excessive growth of aquatic plants, low dissolved oxygen and death of certain aquatic animals. What happens is that aquatic plants such as algae grow in excess and cause algal blooms. When the algae die, the process of decomposition depletes oxygen from the water. This results in low dissolved oxygen levels and possibly fish kills. Phosphate enters the water both naturally and from humans. It naturally occurs in soil and rocks. It may be introduced from human activities such as runoff from fertilized lawns and crop land, failing septic systems, wastewater treatment plants, road salt (which incorporates phosphorus compounds as anti-caking agents), commercial cleaning operations, and stormwater from roads and parking lots (wash-off of deposition from auto exhausts and fluid leaks).

**NO<sub>3</sub>-N is Nitrate Nitrogen** - Nitrogen is normally found in water or soil as ammonia (NH<sub>3</sub>), nitrite (NO<sub>2</sub>) and nitrate (NO<sub>3</sub>). Like phosphorus, nitrogen is also a necessary part of the life cycle. Most plants, animals, and microorganisms require some form of nitrogen for growth and reproduction. Like phosphorus, concentrations above certain levels can cause problems like accelerated plant growth. Accelerated plant growth can smother benthic habitat and life as well as cause low levels of dissolved oxygen. Excessive amounts of nitrates can come from sewage, animal manure, run off from fertilized lawns, stormwater from roads and parking lots, and industrial discharges than contain corrosion inhibitors. Nitrates from land sources end up in rivers more quickly than nutrients like phosphorus. This is because they dissolve in water more readily than phosphorus, which has an attraction for soil particles. Nitrates persist and move through ground water more readily than phosphorus. Nitrates serve as a better indicator of sewage pollution during dry weather.

**Enterococci Bacteria** – Enterococci bacteria are indicators of the presence of human sewage or animal manure. Although they are not harmful themselves, they indicate the possible presence of disease-causing bacteria and viruses. Their presence in streams suggests that disease causing microorganisms might be present and that swimming and eating shellfish might be a health risk. Reported as number of colony forming units (CFU)/100 milliliters of sample. The Water Quality Target Value for Class B and SB for enterococci is 35 CFU per 100 ml as a 90-day geometric mean and no more than 10% of all samples greater than 130 CFU/100 ml. These targets are from the latest MA Water Quality Standards 314 CMR for Class B and SB waters effective 11/12/2021.

**TSS** – This is an indicator of water clarity. TSS measures the level of particulate matter and sediment in the water column. Suspended solids include silt, sediment and clay particles, plankton, algae, fine organic debris and other particulate matter. Suspended solids can cause turbidity which interferes with sunlight penetrating through the water column. This may slow photosynthesis by aquatic plants. Sediment could result in filling-in sensitive habitat that is needed for aquatic life. Sources of solids are industrial discharges, sewage, fertilizers, road runoff, and soil erosion. The monitoring program over many years never measured TSS levels of concern so TRWA suggested that TSS analysis only be conducted on samples which the lab manager observes have visible high levels of sediment.

**Salinity** – The Taunton River is designated as salt water (SB) from where it passes under Route 24 until it reaches Narragansett Bay.

#### **ANALYTICAL METHODS**

This monitoring program uses widely accepted standardized methods and techniques for collecting high quality data, including quality control/quality assurance procedures. The testing focuses on physical, chemical and biological water quality indicators. A Sampling SOP is available upon request.

| Analyte/Parameter            | Analytical Method                                     |  |  |  |  |  |
|------------------------------|-------------------------------------------------------|--|--|--|--|--|
| рН                           | Lab measurement with calibrated meter                 |  |  |  |  |  |
| Temperature                  | Field Thermometer                                     |  |  |  |  |  |
| Total Suspended Solids (TSS) | Standard Methods SM 2540 D, 20 <sup>th</sup> Edition  |  |  |  |  |  |
| Enterococci Bacteria         | Membrane Filtration Using Membrane-Enterococcus       |  |  |  |  |  |
|                              | Indoxyl-B-D-Glucoside Agar, EPA 1600                  |  |  |  |  |  |
| Total Phosphorus             | Standard Methods, SM 4500 P E. Analysis conducted     |  |  |  |  |  |
|                              | by contract laboratory, Microbac Labs                 |  |  |  |  |  |
| Nitrate-Nitrogen             | EPA 300.0. Analysis conducted by contract laboratory, |  |  |  |  |  |
|                              | Microbac Labs                                         |  |  |  |  |  |

| Dissolved Oxygen | Lab measurement with calibrated meter |
|------------------|---------------------------------------|
| Salinity         | Specific Gravity Conversion           |

#### QUALITY CONTROL AND QUALITY ASSURANCE PROCEDURES

QA/QC procedures ensure that the data which is generated is accurate and precise. Accuracy shows how close a data point is to a "known" value. Precision data shows the repeatability of a variable, how often the analyst can run the test and achieve the same result. A series of results can be precise, meaning all very similar in value, but not be accurate, which means they are not close to a true or known value. The best data is both accurate and precise.

The QA/QC Report is included as Appendix A. TRWA collects one duplicate and one blank for every 10 samples (2 /month) for its most environmentally important parameters (nitrate, total phosphorus and enterococci). TRWA has a MassDEP approved Quality Assurance Project Plan (QAPP) for these parameters available on its website https://savethetaunton.org/.

#### DATA COLLECTED DURING YEAR 2023

See the data sheets and graphs in Appendix B.

## **RESULTS – INTERPRETATION OF DATA**

<u>Temperature and Dissolved Oxygen:</u> Temperature varies seasonally and affects the ability of the water to hold oxygen. Cold water holds more oxygen than warm water. Thermal discharges, such as water used to cool machinery in a manufacturing plant or a power plant, raise the temperature of the water and lower its oxygen content. The temperature (in degrees Celsius) ranged from 13.0 - 23.0. In general, as the water temperature increased the dissolved oxygen levels decreased. The DO levels ranged from 3.13 - 11.27. The two highest monthly averages of water temperature measured were July and September. Due to the higher water temperatures, 3 of the samples collected had DO levels below the critical level of 5.00 ppm. NEM-01 was below the critical level for July and September and ASO-01 measured below the critical level for September.

<u>Nutrients – Nitrogen and Phosphorus</u>: At present there are only narrative water quality standards for nutrients in Massachusetts and the Taunton River Watershed. These criteria state that unless naturally occurring, all surface waters shall be free from nutrients in concentrations that would cause or contribute to impairment of existing or designate uses . . . Any existing point source discharge containing nutrients in concentrations that would cause or contribute to cultural eutrophication . . . shall be provided with the most appropriate treatment . . . to remove such nutrients to ensure protection of existing and designated uses. When issuing NDPES permits for states that employ narrative criteria, the EPA must translate those

criteria into a "calculated numeric water quality criterion" that the EPA demonstrates will attain and maintain applicable narrative water quality criteria and will fully protect the designated use. 40 C.F.R. § 122.44(d)(1)(vi)(A).

In Massachusetts EPA uses the water Quality Target Values for Total Phosphorus of 0.100 mg/l for freshwaters in free-flowing streams and 0.050 mg/l in lakes, ponds, impoundments and streams tributary to them. These values are from the EPA Suggested Criteria for Water sometimes called the Gold Book. For nitrogen levels in the Taunton River estuary and Mount Hope Bay EPA used a TN calculated water quality criterion of 0.45 mg/l (between 0.39 to 0.5 mg/l values which MassDEP uses in Total Maximum Daily Loads TMDLs for estuaries without eel grass in good to fair condition.

A rule of thumb when assessing the data is that in general, the nitrate level should be 10 to 16 times greater than the phosphorus level. The range of nutrient levels is summarized below.

| <u>Year</u> | Range of Nitrate-Nitrogen level | Range of Phosphorus level   |
|-------------|---------------------------------|-----------------------------|
| 1999        | 0.2 mg/l - 3.5 mg/l             | 0.0 mg/l – 0.40 mg/l        |
| 2000        | 0.5 mg/l – 2.6 mg/l             | 0.0 mg/l - 0.33 mg/l        |
| 2001        | 0.0 mg/l – 2.6 mg/l             | 0.0 mg/l – 0.39 mg/l        |
| 2002        | 0.0 mg/l – 4.4 mg/l             | 0.0 mg/l – 0.82 mg/l        |
| 2003        | 0.32 mg/l – 113 mg/l            | 0.0 mg/l - 0.35 mg/l        |
| 2004        | 0.0 mg/l – 3.5 mg/l             | 0.0 mg/l – 0.36 mg/l        |
| 2005        | 0.0 mg/l – 4.2 mg/l             | 0.0 mg/l – 0.34 mg/l        |
| 2006        | 0.07 mg/l – 2.2 mg/l            | 0.0 mg/l – 0.98 mg/l        |
| 2007        | 0.11 mg/l – 6.2 mg/l            | 0.0 mg/l – 1.0 mg/l         |
| 2008        | 0.0 mg/l – 2.6 mg/l             | 0.0 mg/l – 0.45 mg/l        |
| 2009        | 0.0 mg/l – 1.2 mg/l             | 0.0 mg/l – 0.36 mg/l        |
| 2010        | 0.0 mg/l – 4.1 mg/l             | 0.0 mg/l – 0.19 mg/l        |
| 2011        | 0.02 mg/l – 2.1 mg/l            | 0.0 mg/l – 0.52 mg/l        |
| 2012        | 0.0 mg/L – 2.7 mg/L             | 0.0 mg/L – 0.22 mg/L        |
| 2013        | 0.0 mg/L – 2.3 mg/L             | 0.0 mg/L – 0.24 mg/L        |
| 2014        | 0.0 mg/L – 6.2 mg/L             | 0.0 mg/L – 0.23 mg/L        |
| 2015        | 0.0 mg/L – 4.7 mg/L             | 0.0 mg/L – 0.85 mg/L        |
| 2016        | 0.0 mg/L – 13 mg/L              | 0.0 mg/L – 0.39 mg/L        |
| 2017        | 0.05 mg/L – 7.32 mg/L           | 0.01 mg/L – 0.82 mg/L       |
| 2018        | 0.05 mg/L – 2.74 mg/L           | 0.01 mg/L – 0.18 mg/L       |
| 2019        | 0.05 mg/L – 5.55 mg/L           | 0.01 mg/L – 0.15 mg/L       |
| 2020        | Monitoring season canceled d    | ue to the COVID-19 pandemic |
| 2021        | 0.03 mg/L – 1.05 mg/L           | 0.02 mg/L – 0.26 mg/L       |
| 2022        | 0.05 mg/L – 4.28 mg/L           | 0.01 mg/L – 0.20 mg/L       |
| 2023        | 0.05 mg/L – 1.37 mg/L           | 0.01 mg/L – 0.22 mg/L       |

<u>Enterococci Bacteria</u>: The Massachusetts standard where enterococci are the chosen indicator, is 35 CFU per 100 ml as a 90-day geometric mean and no more than 10% of all samples greater than 130 CFU/100 ml. These targets are from the latest MA Water Quality Standards 314 CMR for both Class B and SB waters effective 11/12/2021.

Because the Taunton River is tidally influenced, sources of enterococci bacteria from both upstream and downstream can be measured in the samples collected. Examples of sources include failing septic systems, stormwater runoff, illicit sewer connections, failing infrastructure and combined sewer overflows (CSOs). These sources have a much greater impact during wet weather. A number of significant weather events occurred in July, August and September; resulting in some of the highest rainfall totals on record. The enterococci sampling results reflect the impact the rainfall had on the Taunton River Watershed during these months.

The range of enterococci results was from 10 colonies/100 mL to 2000 colonies/100 mL. Every site exceeded the 90-day geometric mean criterion of 35 colonies/100 mL level of concern at least once during the 2023 sampling season (see data sheet and chart). The range of 90-day geometric mean (July – September) was from 187 colonies/100 mL to 1003 colonies/100 mL. For sites TNT-01 and TNT-02, which are in Class SB waters, the same criteria apply (90-day geometric mean shall not exceed 35 colonies per 100 mL and no more than 10% of all samples shall exceed 130 colonies per 100 mL.) These sites had 90-day geometric means of 814 and 703 colonies per 100 mL well over the 35 colonies per 100 mL water quality criterion.

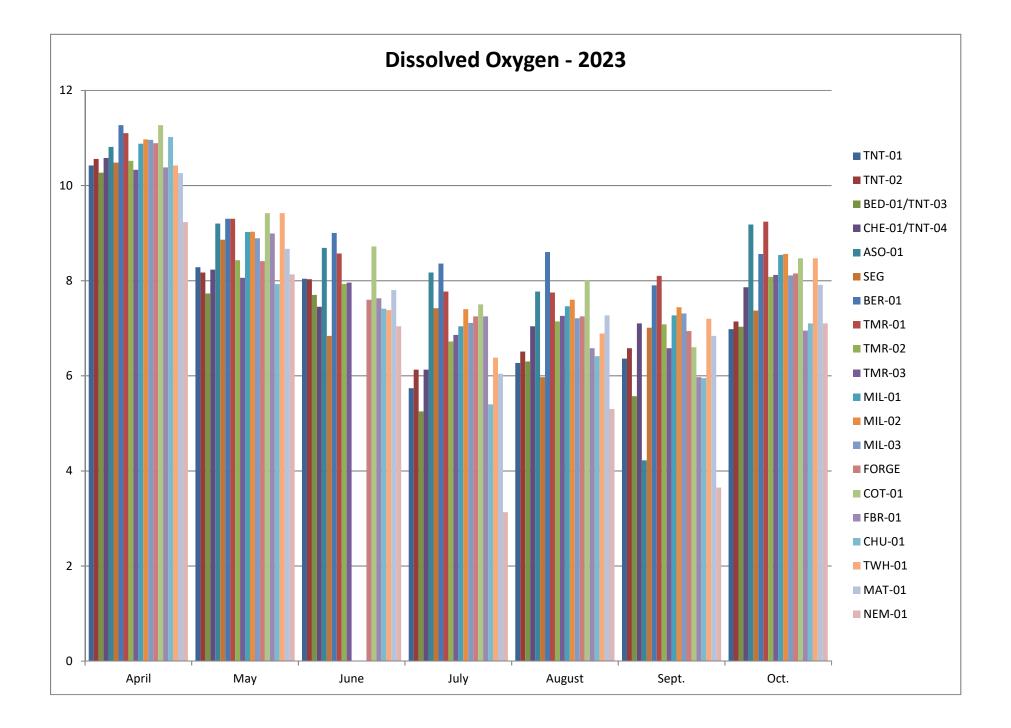
The Mill River runs through the "Core" area of the City. This is the oldest part of the City. As directed by the EPA in an Administrative Order, the City is investigating this area extensively for combined sewers overflows (pipes that carry both storm water and sanitary sewer and are divided by a weir wall which may have degraded or the pipe size is inadequate for the flow and there is crossover between storm and sanitary). Any pipes that are found to be overflowing sanitary sewer to the storm drains are being corrected by the City. Any pipes found to be overflowing storm water to the sanitary sewer line are being placed on a schedule for separation.

<u>pH</u>: Most of the rivers and ponds in the Taunton watershed have a natural pH of around 5. They are slightly acidic and also naturally tea-colored due to the iron bogs of the Hockomock Swamp. pH samples are taken in the field and range from 2.7 – 6.9. Of note are sites COT-01, CHU-01, TWH-01, MAT-01, and NEM-01, which had one or two pH results well below a 6.5. A significant rain event occurred the day before the September sampling occurred. Rain being acidic likely caused the drop in pH results observed in September.

<u>TSS and Turbidity</u>: Because of low turbidity observed during sampling both suspended solids and turbidity measurements were not taken this year.

#### CONCLUSION

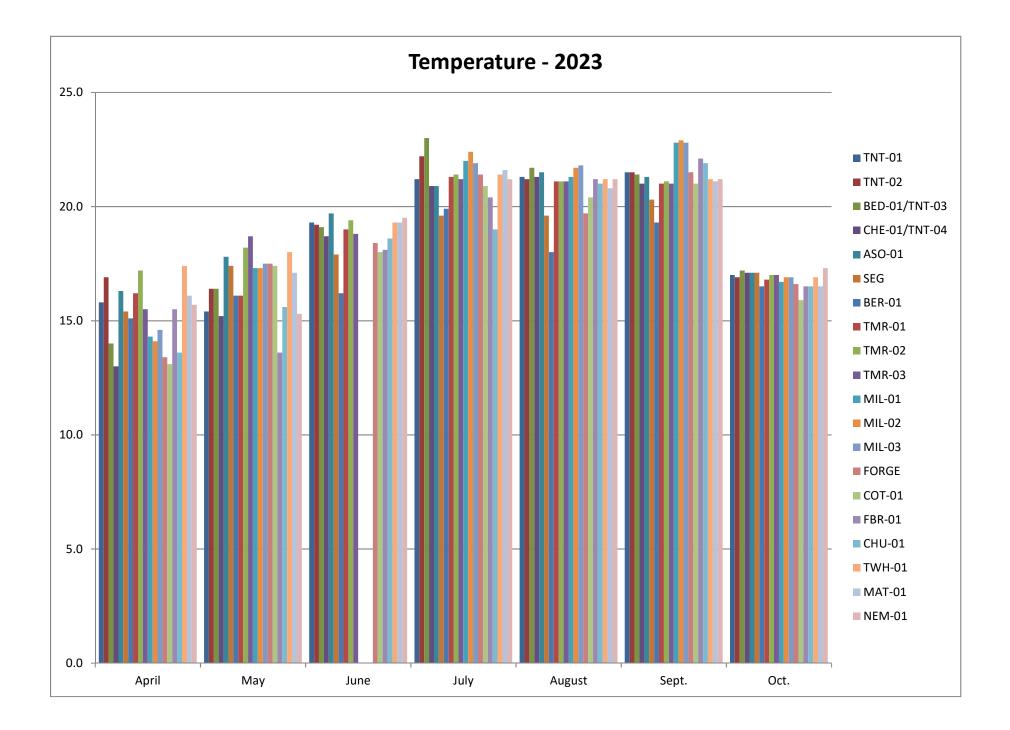
As a result of the TRWA's decision to replace fecal coliform testing with enterococci testing and taking one duplicate and one blank for every 10 samples (2 per month) and the documentation of the QA program that was submitted, TRWA has obtained MADEP approval of the Quality Assurance Project Plan (QAPP) in October of 2019.


Enterococci is currently a concern at all sites due to each of them exceeding the MassDEP's new standard of 90-day geometric mean 35 colonies/100 ml. The City is continuing sewer and infrastructure improvements, including pipe replacement, re-lining, manhole repairs and replacement, and separation of storm drains and sewer lines. The intense rainstorms this summer particularly during July and September generated readily apparent increases in both bacteria and total phosphorus. This illustrates the importance of stormwater management.

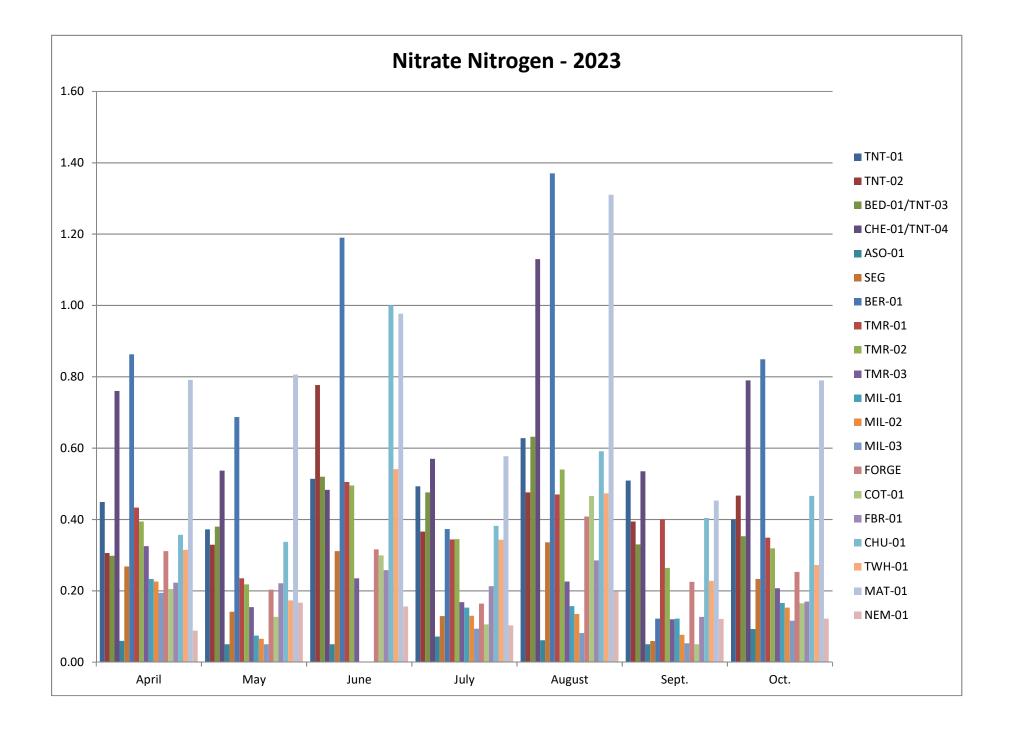
A major improvement to the sampling program has been the installation of a river gauge on the Mill River. The closest sampling location to the gauge is the Washington Street site, MIL-02. Obtaining flow values for the river allows us to convert concentration-based values to mass-based values. We can measure the nutrients in pounds, which allow us to compare data on an equal scale from month to month. A graph is attached which shows the pounds of nutrients discharging from the Mill River into the Taunton River. This is included in Appendix B. The nutrient loading levels on the Mill River over the past ten years have, for the most part, shown a steady decrease. This is most likely due to the repair and replacement of broken sewer pipes, the re-lining of impaired sewer pipe and the separation of sanitary sewer pipe and storm water pipe throughout the City of Taunton.

#### **\*\*\***Thank you to our TRWA volunteers:

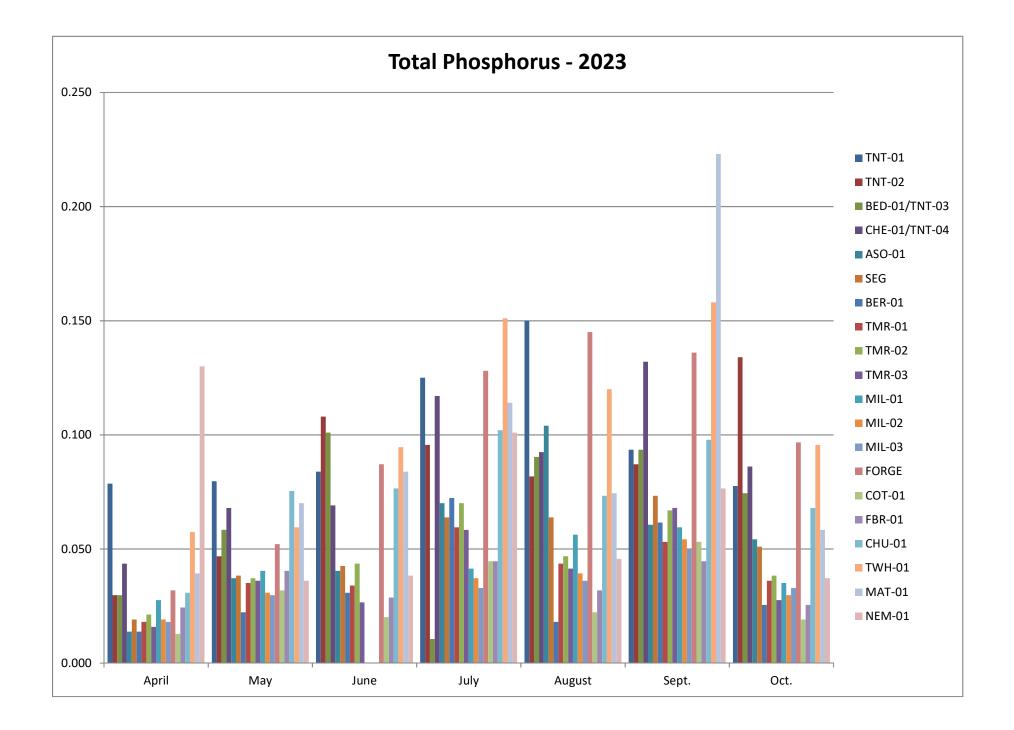
| Jeff Morse       |
|------------------|
| Anne Morse       |
| Carolyn Borden   |
| Kate Andrew      |
| Elaine Rezendes  |
| Steve Desrosiers |
| Bill Ferry       |
| Carolyn Lazaris  |
| Cheryl Graham    |


Brad Gonyer Donna Berthelette Steve Silva Al Svendsen Alannah Almeda Rachel Desrosiers Bill VanMeter Kit VanMeter Annette Murphy Robert Sullivan Janice McGonagle Shaun Tibbetts Ronald Washburn Natalie Johnson Shari Sprong Alma Weightman Appendix A – Year 2023 Data

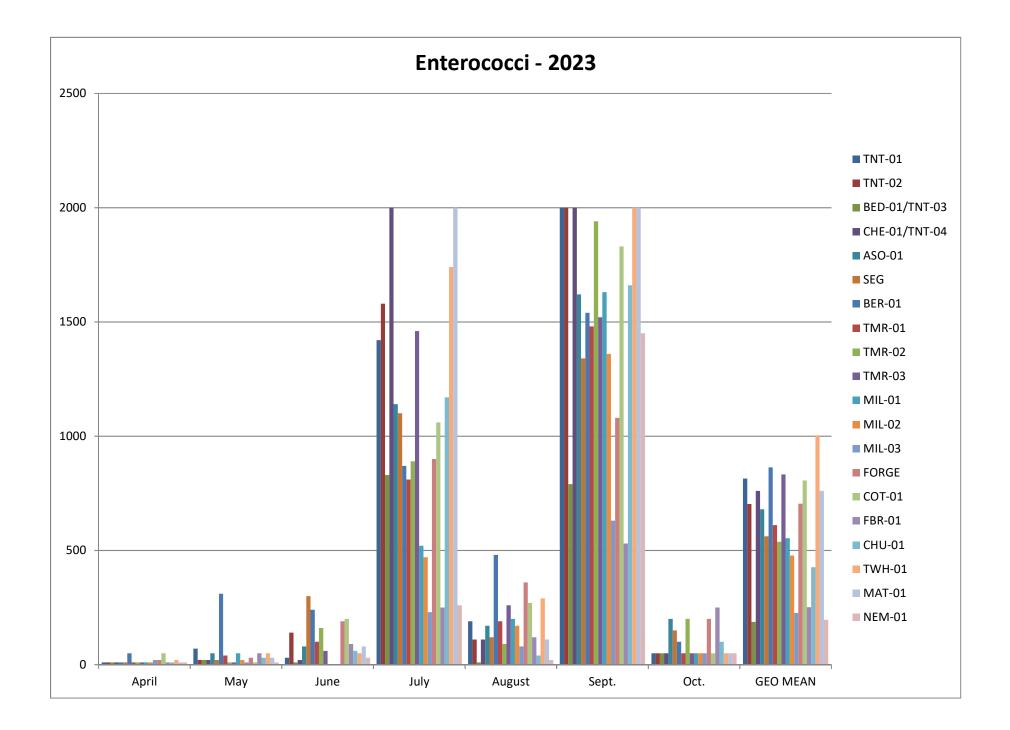



| 2023 TR | WA Sampling   | Results for Dissolved Oxygen (mg/l)         | TARGET F |       | RN - LESS T | HAN 5.0 N | /IG/L (or hig | h values d | luring blooms) |  |
|---------|---------------|---------------------------------------------|----------|-------|-------------|-----------|---------------|------------|----------------|--|
| Sample  | Site No.      | River & Location Description                | April    | May   | June        | July      | August        | Sept.      | Oct.           |  |
| 1       | TNT-01        | Taunton R. Br, Center St., Berkley          | 10.42    | 8.28  | 8.04        | 5.74      | 6.27          | 6.36       | 6.98           |  |
| 2       | TNT-02        | Taunton R. Br, Plain St., Taunton           | 10.56    | 8.17  | 8.03        | 6.13      | 6.51          | 6.58       | 7.14           |  |
| 3       | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | 10.27    | 7.73  | 7.70        | 5.25      | 6.30          | 5.57       | 7.03           |  |
| 4       | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater      | 10.58    | 8.23  | 7.45        | 6.13      | 7.04          | 7.1        | 7.86           |  |
| 5       | ASO-01        | Assonet R. Bridge, Rt 79                    | 10.81    | 9.2   | 8.69        | 8.17      | 7.77          | 4.22       | 9.18           |  |
| 6       | SEG           | Segregansett R. Br, Brook St. Dighton       | 10.48    | 8.86  | 6.84        | 7.42      | 5.97          | 7.01       | 7.37           |  |
| 7       | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | 11.27    | 9.3   | 9.00        | 8.36      | 8.60          | 7.90       | 8.56           |  |
| 8       | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.     | 11.10    | 9.30  | 8.57        | 7.77      | 7.75          | 8.10       | 9.24           |  |
| 9       | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | 10.52    | 8.43  | 7.93        | 6.72      | 7.14          | 7.08       | 8.08           |  |
| 10      | TMR-03        | Three Mile R. Br, Crane St., Norton         | 10.33    | 8.06  | 7.96        | 6.86      | 7.26          | 6.58       | 8.12           |  |
| 11      | MIL-01        | Mill R., Ingell St., Taunton                | 10.88    | 9.02  | NR          | 7.04      | 7.46          | 7.27       | 8.54           |  |
| 12      | MIL-02        | Mill R., Washington St., Taunton            | 10.97    | 9.03  | NR          | 7.40      | 7.60          | 7.44       | 8.56           |  |
| 13      | MIL-03        | Mill R., Whittendon St., Taunton            | 10.96    | 8.89  | NR          | 7.11      | 7.21          | 7.31       | 8.11           |  |
| 14      | FORGE         | Forge R. Br, Rt 44, Raynham                 | 10.89    | 8.41  | 7.60        | 7.25      | 7.25          | 6.94       | 8.15           |  |
| 15      | COT-01        | Cotley R., Middleboro Ave, Taunton          | 11.27    | 9.42  | 8.72        | 7.5       | 8.01          | 6.60       | 8.47           |  |
| 16      | FBR-01        | Furnace Brk., River St., E. Taunton         | 10.38    | 8.99  | 7.63        | 7.25      | 6.58          | 5.97       | 6.95           |  |
| 17      | CHU-01        | Taunton River Br, Church St., Raynham       | 11.02    | 7.93  | 7.41        | 5.40      | 6.41          | 5.95       | 7.10           |  |
| 18      | TWH-01        | Town R., Br, Hayward St., Bridgewater       | 10.42    | 9.42  | 7.38        | 6.38      | 6.89          | 7.20       | 8.47           |  |
| 19      | MAT-01        | Matfield R., Br, High St., Bridgewater      | 10.26    | 8.67  | 7.80        | 6.04      | 7.27          | 6.84       | 7.91           |  |
| 20      | NEM-01        | Nemasket R., Murdock St., Middleboro        | 9.23     | 8.13  | 7.04        | 3.13      | 5.30          | 3.65       | 7.10           |  |
|         |               |                                             |          |       |             |           |               |            |                |  |
|         |               | Duplicate Sample Location                   | DUP #    | DUP F | lesults     |           |               |            |                |  |
| April   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1    | 11    | .19         |           |               |            |                |  |
|         | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | DUP 2    | 11    | .52         |           |               |            |                |  |
| May     | FBR-01        | Furnace Brk., River St., E. Taunton         | DUP 1    | 9.    | 05          |           |               |            |                |  |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2    | N     | R           |           |               |            |                |  |
| June    | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1    | 8.    | 03          |           |               |            |                |  |
|         | ASO-01        | Assonet R. Bridge, Rt 79                    | DUP 2    | 8.    | 66          |           |               |            |                |  |
| July    | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | DUP 1    | 5.    | 74          |           |               |            |                |  |
|         | SEG           | Segregansett R. Br, Brook St. Dighton       | DUP 2    | 7.    | 22          |           |               |            |                |  |
| August  | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1    | 6.    | 54          |           |               |            |                |  |
|         | MAT-01        | Matfield R., Br, High St., Bridgewater      | DUP 2    | 7.    | 21          |           |               |            |                |  |
| Sept.   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1    | 6.    | 57          |           |               |            |                |  |
|         | MIL-01        | Mill R., Ingell St., Taunton                | DUP 2    | 7.    | 38          |           |               |            |                |  |
| Oct.    | NEM-01        | Nemasket R., Murdock St., Middleboro        | DUP 1    | 7.    | 05          |           |               |            |                |  |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2    | 8.    | 04          |           |               |            |                |  |




| 2023 TRWA Sampling Results for pH |               |                                             |       | TARGET FOR CONCERN - Outside Range 6.5 through 8.3 or 0.5 units from natural |         |      |        |       |      |  |  |  |
|-----------------------------------|---------------|---------------------------------------------|-------|------------------------------------------------------------------------------|---------|------|--------|-------|------|--|--|--|
| Sample                            | Site No.      | River & Location Description                | April | May                                                                          | June    | July | August | Sept. | Oct. |  |  |  |
| 1                                 | TNT-01        | Taunton R. Br, Center St., Berkley          | 6.71  | 6.32                                                                         | 6.71    | 6.40 | 6.81   | 6.38  | 6.06 |  |  |  |
| 2                                 | TNT-02        | Taunton R. Br, Plain St., Taunton           | 6.62  | 6.42                                                                         | 6.83    | 6.47 | 6.92   | 6.40  | 6.11 |  |  |  |
| 3                                 | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | 5.64  | 6.08                                                                         | 5.83    | 6.60 | 6.02   | 5.43  | 5.83 |  |  |  |
| 4                                 | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater      | 5.83  | 6.24                                                                         | 6.22    | 6.60 | 6.43   | 5.84  | 5.67 |  |  |  |
| 5                                 | ASO-01        | Assonet R. Bridge, Rt 79                    | 5.89  | 5.56                                                                         | 5.59    | 6.61 | 6.05   | 5.39  | 5.56 |  |  |  |
| 6                                 | SEG           | Segregansett R. Br, Brook St. Dighton       | 6.02  | 6.23                                                                         | 5.64    | 5.96 | 6.32   | 5.72  | 4.33 |  |  |  |
| 7                                 | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | 5.87  | 6.10                                                                         | 5.95    | 6.48 | 6.19   | 5.70  | 6.03 |  |  |  |
| 8                                 | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.     | 6.73  | 6.56                                                                         | 6.55    | 6.48 | 6.34   | 6.34  | 5.89 |  |  |  |
| 9                                 | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | 6.67  | 6.63                                                                         | 6.71    | 6.40 | 6.54   | 6.47  | 5.96 |  |  |  |
| 10                                | TMR-03        | Three Mile R. Br, Crane St., Norton         | 6.69  | 6.67                                                                         | 6.60    | 6.49 | 6.70   | 6.41  | 6.31 |  |  |  |
| 11                                | MIL-01        | Mill R., Ingell St., Taunton                | 6.41  | 6.42                                                                         | NR      | 6.64 | 6.78   | 6.35  | 6.25 |  |  |  |
| 12                                | MIL-02        | Mill R., Washington St., Taunton            | 6.51  | 6.59                                                                         | NR      | 6.60 | 6.85   | 6.40  | 6.31 |  |  |  |
| 13                                | MIL-03        | Mill R., Whittendon St., Taunton            | 6.59  | 6.14                                                                         | NR      | 6.63 | 6.86   | 6.52  | 6.43 |  |  |  |
| 14                                | FORGE         | Forge R. Br, Rt 44, Raynham                 | 5.64  | 6.44                                                                         | 6.56    | 6.05 | 5.86   | 5.51  | 5.66 |  |  |  |
| 15                                | COT-01        | Cotley R., Middleboro Ave, Taunton          | 3.97  | 6.48                                                                         | 6.50    | 6.75 | 6.72   | 2.97  | 6.26 |  |  |  |
| 16                                | FBR-01        | Furnace Brk., River St., E. Taunton         | 6.35  | 6.12                                                                         | 5.50    | 6.17 | 6.76   | 4.29  | 6.28 |  |  |  |
| 17                                | CHU-01        | Taunton River Br, Church St., Raynham       | 6.03  | 6.44                                                                         | 6.34    | 6.53 | 6.72   | 3.15  | 6.32 |  |  |  |
| 18                                | TWH-01        | Town R., Br, Hayward St., Bridgewater       | 5.91  | 6.48                                                                         | 6.61    | 6.49 | 5.03   | 3.38  | 3.35 |  |  |  |
| 19                                | MAT-01        | Matfield R., Br, High St., Bridgewater      | 2.84  | 6.42                                                                         | 6.41    | 6.50 | 6.60   | 2.72  | 5.79 |  |  |  |
| 20                                | NEM-01        | Nemasket R., Murdock St., Middleboro        | 5.75  | 3.67                                                                         | 3.50    | 6.09 | 6.70   | 3.73  | 6.38 |  |  |  |
|                                   |               |                                             |       |                                                                              |         |      |        |       |      |  |  |  |
|                                   |               | Duplicate Sample Location                   | DUP # | DUP F                                                                        | Results |      |        |       |      |  |  |  |
| April                             | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1 | 3.                                                                           | 97      |      |        |       |      |  |  |  |
|                                   | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | DUP 2 | 5.                                                                           | 85      |      |        |       |      |  |  |  |
| May                               | FBR-01        | Furnace Brk., River St., E. Taunton         | DUP 1 | N                                                                            | IR      |      |        |       |      |  |  |  |
|                                   | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2 | N                                                                            | IR      |      |        |       |      |  |  |  |
| lune                              | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1 | 6.                                                                           | 53      |      |        |       |      |  |  |  |
|                                   | ASO-01        | Assonet R. Bridge, Rt 79                    | DUP 2 | 5.                                                                           | 71      |      |        |       |      |  |  |  |
| luly                              | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | DUP 1 | 5.                                                                           | 12      |      |        |       |      |  |  |  |
|                                   | SEG           | Segregansett R. Br, Brook St. Dighton       | DUP 2 | 6.64                                                                         |         |      |        |       |      |  |  |  |
| August                            | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1 | 6.                                                                           | 29      |      |        |       |      |  |  |  |
|                                   | MAT-01        | Matfield R., Br, High St., Bridgewater      | DUP 2 | 6.                                                                           | 19      |      |        |       |      |  |  |  |
| Sept.                             | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1 | 3.                                                                           | 08      |      |        |       |      |  |  |  |
|                                   | MIL-01        | Mill R., Ingell St., Taunton                | DUP 2 | 6.                                                                           | 44      |      |        |       |      |  |  |  |
| Oct.                              | NEM-01        | Nemasket R., Murdock St., Middleboro        | DUP 1 | 5.                                                                           | 83      |      |        |       |      |  |  |  |
|                                   | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2 | 6.                                                                           | 32      |      |        |       |      |  |  |  |




| 2023 TR | WA Sampling   | Results for Temperature (Degrees C)         | TARGET FOR CONCERN - Greater Than 28.3°C |       |                              |      |            |            |                           |              |      |
|---------|---------------|---------------------------------------------|------------------------------------------|-------|------------------------------|------|------------|------------|---------------------------|--------------|------|
| Sample  | Site No.      | River & Location Description                | April                                    | May   | June                         | July | August     | Sept.      | Oct.                      |              |      |
| 1       | TNT-01        | Taunton R. Br, Center St., Berkley          | 15.8                                     | 15.4  | 19.3                         | 21.2 | 21.3       | 21.5       | 17.0                      |              |      |
| 2       | TNT-02        | Taunton R. Br, Plain St., Taunton           | 16.9                                     | 16.4  | 19.2                         | 22.2 | 21.2       | 21.5       | 16.9                      |              |      |
| 3       | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | 14.0                                     | 16.4  | 19.1                         | 23.0 | 21.7       | 21.4       | 17.2                      |              |      |
| 4       | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater      | 13.0                                     | 15.2  | 18.7                         | 20.9 | 21.3       | 21.0       | 17.1                      |              |      |
| 5       | ASO-01        | Assonet R. Bridge, Rt 79                    | 16.3                                     | 17.8  | 19.7                         | 20.9 | 21.5       | 21.3       | 17.1                      |              |      |
| 6       | SEG           | Segregansett R. Br, Brook St. Dighton       | 15.4                                     | 17.4  | 17.9                         | 19.6 | 19.6       | 20.3       | 17.1                      |              |      |
| 7       | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | 15.1                                     | 16.1  | 16.2                         | 19.9 | 18.0       | 19.3       | 16.5                      |              |      |
| 8       | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.     | 16.2                                     | 16.1  | 19.0                         | 21.3 | 21.1       | 21.0       | 16.8                      |              |      |
| 9       | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | 17.2                                     | 18.2  | 19.4                         | 21.4 | 21.1       | 21.1       | 17.0                      |              |      |
| 10      | TMR-03        | Three Mile R. Br, Crane St., Norton         | 15.5                                     | 18.7  | 18.8                         | 21.2 | 21.1       | 21.0       | 17.0                      |              |      |
| 11      | MIL-01        | Mill R., Ingell St., Taunton                | 14.3                                     | 17.3  | NR                           | 22.0 | 21.3       | 22.8       | 16.7                      |              |      |
| 12      | MIL-02        | Mill R., Washington St., Taunton            | 14.1                                     | 17.3  | NR                           | 22.4 | 21.7       | 22.9       | 16.9                      |              |      |
| 13      | MIL-03        | Mill R., Whittendon St., Taunton            | 14.6                                     | 17.5  | NR                           | 21.9 | 21.8       | 22.8       | 16.9                      |              |      |
| 14      | FORGE         | Forge R. Br, Rt 44, Raynham                 | 13.4                                     | 17.5  | 18.4                         | 21.4 | 19.7       | 21.5       | 16.6                      |              | -    |
| 15      | COT-01        | Cotley R., Middleboro Ave, Taunton          | 13.1                                     | 17.4  | 18.0                         | 20.9 | 20.4       | 21.0       | 15.9                      |              |      |
| 16      | FBR-01        | Furnace Brk., River St., E. Taunton         | 15.5                                     | 13.6  | 18.1                         | 20.4 | 21.2       | 22.1       | 16.5                      |              |      |
| 17      | CHU-01        | Taunton River Br, Church St., Raynham       | 13.6                                     | 15.6  | 18.6                         | 19.0 | 21.0       | 21.9       | 16.5                      |              |      |
| 18      | TWH-01        | Town R., Br, Hayward St., Bridgewater       | 17.4                                     | 18.0  | 19.3                         | 21.4 | 21.2       | 21.2       | 16.9                      |              |      |
| 19      | MAT-01        | Matfield R., Br, High St., Bridgewater      | 16.1                                     | 17.1  | 19.3                         | 21.6 | 20.8       | 21.1       | 16.5                      |              |      |
| 20      | NEM-01        | Nemasket R., Murdock St., Middleboro        | 15.7                                     | 15.3  | 19.5                         | 21.2 | 21.2       | 21.2       | 17.3                      |              |      |
|         |               |                                             |                                          |       |                              |      |            |            |                           |              |      |
|         |               | Duplicate Sample Location                   | DUP #                                    | DUP R | OUP Results Duplicate sample |      |            |            | otained by second reading |              |      |
| April   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1                                    | 13    | 8.5                          |      | with anoth | ner thermo | ometer or re              | ading by ano | ther |
|         | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | DUP 2                                    | 12    | 2.5                          |      | team mem   | ber.       |                           |              |      |
| Лау     | FBR-01        | Furnace Brk., River St., E. Taunton         | DUP 1                                    | 14    | 1.2                          |      |            |            |                           |              |      |
| -       | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2                                    | N     | IR                           |      | NR - Not R | eported, n | o sample                  |              |      |
| une     | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1                                    | 19    | 9.2                          |      |            | -          | _                         |              |      |
|         | ASO-01        | Assonet R. Bridge, Rt 79                    | DUP 2                                    | 19    | 9.6                          |      |            |            |                           |              |      |
| uly     | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | DUP 1                                    | 21    | .0                           |      |            |            |                           |              |      |
|         | SEG           | Segregansett R. Br, Brook St. Dighton       | DUP 2                                    | 20.0  |                              |      |            |            |                           |              |      |
| August  | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1                                    | 21    | .1                           |      |            |            |                           |              |      |
| -       | MAT-01        | Matfield R., Br, High St., Bridgewater      | DUP 2                                    |       | .0                           |      |            |            |                           |              |      |
| Sept.   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1                                    |       | .0                           |      |            |            |                           |              |      |
| •       | MIL-01        | Mill R., Ingell St., Taunton                | DUP 2                                    |       | 2.3                          |      |            |            |                           |              |      |
| Oct.    | NEM-01        | Nemasket R., Murdock St., Middleboro        | DUP 1                                    |       | 7.7                          |      |            |            |                           |              |      |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2                                    |       | 7.5                          |      |            |            |                           |              |      |



| 2023 TRWA Sampling Results for Nitrate (mg/l) |               |                                             | TARGET | FOR CON  | CERN - G  | REATER T | HAN 0.4 | MG/L    |               |               |                 |
|-----------------------------------------------|---------------|---------------------------------------------|--------|----------|-----------|----------|---------|---------|---------------|---------------|-----------------|
| Sample                                        | Site No.      | River & Location Description                | April  | May      | June      | July     | August  | Sept.   | Oct.          | AVG**         |                 |
| 1                                             | TNT-01        | Taunton R. Br, Center St., Berkley          | 0.45   | 0.37     | 0.51      | 0.49     | 0.63    | 0.51    | 0.40          | 0.49          |                 |
| 2                                             | TNT-02        | Taunton R. Br, Plain St., Taunton           | 0.31   | 0.33     | 0.78      | 0.37     | 0.48    | 0.39    | 0.47          | 0.47          |                 |
| 3                                             | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | 0.30   | 0.38     | 0.52      | 0.48     | 0.63    | 0.33    | 0.35          | 0.45          |                 |
| 4                                             | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater      | 0.76   | 0.54     | 0.48      | 0.57     | 1.13    | 0.54    | 0.79          | 0.67          |                 |
| 5                                             | ASO-01        | Assonet R. Bridge, Rt 79                    | 0.06   | 0.05     | 0.05      | 0.07     | 0.06    | 0.05    | 0.09          | 0.06          |                 |
| 6                                             | SEG           | Segregansett R. Br, Brook St. Dighton       | 0.27   | 0.14     | 0.31      | 0.13     | 0.34    | 0.06    | 0.23          | 0.20          |                 |
| 7                                             | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | 0.86   | 0.69     | 1.19      | 0.37     | 1.37    | 0.12    | 0.85          | 0.77          |                 |
| 8                                             | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.     | 0.43   | 0.24     | 0.51      | 0.34     | 0.47    | 0.40    | 0.35          | 0.38          |                 |
| 9                                             | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | 0.39   | 0.22     | 0.50      | 0.35     | 0.54    | 0.26    | 0.32          | 0.36          |                 |
| 10                                            | TMR-03        | Three Mile R. Br, Crane St., Norton         | 0.33   | 0.15     | 0.24      | 0.17     | 0.23    | 0.12    | 0.21          | 0.19          |                 |
| 11                                            | MIL-01        | Mill R., Ingell St., Taunton                | 0.23   | 0.07     | NR        | 0.15     | 0.16    | 0.12    | 0.17          | 0.13          |                 |
| 12                                            | MIL-02        | Mill R., Washington St., Taunton            | 0.23   | 0.07     | NR        | 0.13     | 0.14    | 0.08    | 0.15          | 0.11          |                 |
| 13                                            | MIL-03        | Mill R., Whittendon St., Taunton            | 0.19   | 0.05     | NR        | 0.09     | 0.08    | 0.05    | 0.12          | 0.08          |                 |
| 14                                            | FORGE         | Forge R. Br, Rt 44, Raynham                 | 0.31   | 0.20     | 0.32      | 0.16     | 0.41    | 0.23    | 0.25          | 0.26          |                 |
| 15                                            | COT-01        | Cotley R., Middleboro Ave, Taunton          | 0.21   | 0.13     | 0.30      | 0.11     | 0.47    | 0.05    | 0.17          | 0.20          |                 |
| 16                                            | FBR-01        | Furnace Brk., River St., E. Taunton         | 0.22   | 0.22     | 0.26      | 0.21     | 0.29    | 0.13    | 0.17          | 0.21          |                 |
| 17                                            | CHU-01        | Taunton River Br, Church St., Raynham       | 0.36   | 0.34     | 1.00      | 0.38     | 0.59    | 0.40    | 0.47          | 0.53          |                 |
| 18                                            | TWH-01        | Town R., Br, Hayward St., Bridgewater       | 0.32   | 0.17     | 0.54      | 0.34     | 0.47    | 0.23    | 0.27          | 0.34          |                 |
| 19                                            | MAT-01        | Matfield R., Br, High St., Bridgewater      | 0.79   | 0.81     | 0.98      | 0.58     | 1.31    | 0.45    | 0.79          | 0.82          |                 |
| 20                                            | NEM-01        | Nemasket R., Murdock St., Middleboro        | 0.09   | 0.17     | 0.16      | 0.10     | 0.20    | 0.12    | 0.12          | 0.14          |                 |
|                                               |               |                                             |        |          |           |          |         |         |               |               |                 |
| Month                                         | Site No.      | Duplicate and Blank Locations by Month      | DUP #  | Duplicat | e Results | BL #     | Blank F | Results | ** Avg is for | r the water q | uality months   |
| April                                         | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1  | 0.       | 21        | BL 1     | <0.     | 05      | of May thro   | ugh October   | used in         |
|                                               | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | DUP 2  | 0.       | 87        | BL 2     | <0.     | 05      | NPDES perr    | nit TN limita | tion averaging. |
| May                                           | FBR-01        | Furnace Brk., River St., E. Taunton         | DUP 1  | 0.       | 22        | BL 1     | <0.     | 05      |               |               |                 |
|                                               | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2  | 0.       | 22        | BL 2     | <0.     | 05      | NR = Not      | Reported,     | no sample       |
| June                                          | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1  | 0.       | 78        | BL 1     | <0.     | 05      |               |               |                 |
|                                               | ASO-01        | Assonet R. Bridge, Rt 79                    | DUP 2  | <0       | .05       | BL 2     | <0.     | 05      |               |               |                 |
| July                                          | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | DUP 1  | 0.       | 47        | BL 1     | 0.0     | 06      |               |               |                 |
|                                               | SEG           | Segregansett R. Br, Brook St. Dighton       | DUP 2  | 0.       | 47        | BL 2     | 0.2     |         |               |               |                 |
| August                                        | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1  | 0.       | 48        | BL 1     | <0.     |         |               |               |                 |
|                                               | MAT-01        | Matfield R., Br, High St., Bridgewater      | DUP 2  | 1.       | 32        | BL 2     | <0.     | 05      |               |               |                 |
| Sept.                                         | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1  | 0.       | 05        | BL 1     | <0.     | 05      |               |               |                 |
|                                               | MIL-01        | Mill R., Ingell St., Taunton                | DUP 2  | 0.       | 11        | BL 2     | <0.     |         |               |               |                 |
| Oct.                                          | NEM-01        | Nemasket R., Murdock St., Middleboro        | DUP 1  | 0.       | 12        | BL 1     | 0.2     |         |               |               |                 |
|                                               | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2  | 0.       | 32        | BL 2     | 0.0     | )8      |               |               |                 |



| 2023 TR | WA Sampling   | Results for Total Phosphorus (mg/l)         |       | TARGET   | FOR CON   | CERN - G | REATER T  | HAN 0.1       | 00 mg/l                     |                    |                 |
|---------|---------------|---------------------------------------------|-------|----------|-----------|----------|-----------|---------------|-----------------------------|--------------------|-----------------|
| Sample  | Site No.      | <b>River &amp; Location Description</b>     | April | May      | June      | July     | August    | Sept.         | Oct.                        | AVG**              |                 |
| 1       | TNT-01        | Taunton R. Br, Center St., Berkley          | 0.079 | 0.080    | 0.084     | 0.125    | 0.150     | 0.094         | 0.078                       | 0.102              |                 |
| 2       | TNT-02        | Taunton R. Br, Plain St., Taunton           | 0.030 | 0.047    | 0.108     | 0.096    | 0.082     | 0.087         | 0.134                       | 0.092              |                 |
| 3       | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | 0.030 | 0.058    | 0.101     | 0.011    | 0.090     | 0.094         | 0.074                       | 0.071              |                 |
| 4       | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater      | 0.044 | 0.068    | 0.069     | 0.117    | 0.092     | 0.132         | 0.086                       | 0.094              |                 |
| 5       | ASO-01        | Assonet R. Bridge, Rt 79                    | 0.014 | 0.037    | 0.040     | 0.070    | 0.104     | 0.061         | 0.054                       | 0.061              |                 |
| 6       | SEG           | Segregansett R. Br, Brook St. Dighton       | 0.019 | 0.038    | 0.043     | 0.064    | 0.064     | 0.073         | 0.051                       | 0.055              |                 |
| 7       | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | 0.014 | 0.022    | 0.031     | 0.072    | 0.018     | 0.062         | 0.026                       | 0.038              |                 |
| 8       | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.     | 0.018 | 0.035    | 0.034     | 0.060    | 0.044     | 0.053         | 0.036                       | 0.044              |                 |
| 9       | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | 0.021 | 0.037    | 0.044     | 0.070    | 0.047     | 0.067         | 0.038                       | 0.050              |                 |
| 10      | TMR-03        | Three Mile R. Br, Crane St., Norton         | 0.016 | 0.036    | 0.027     | 0.058    | 0.041     | 0.068         | 0.028                       | 0.043              |                 |
| 11      | MIL-01        | Mill R., Ingell St., Taunton                | 0.028 | 0.040    | NR        | 0.041    | 0.056     | 0.060         | 0.035                       | 0.047              |                 |
| 12      | MIL-02        | Mill R., Washington St., Taunton            | 0.019 | 0.031    | NR        | 0.037    | 0.039     | 0.054         | 0.030                       | 0.038              |                 |
| 13      | MIL-03        | Mill R., Whittendon St., Taunton            | 0.018 | 0.030    | NR        | 0.033    | 0.036     | 0.050         | 0.033                       | 0.036              |                 |
| 14      | FORGE         | Forge R. Br, Rt 44, Raynham                 | 0.032 | 0.052    | 0.087     | 0.128    | 0.145     | 0.136         | 0.097                       | 0.107              |                 |
| 15      | COT-01        | Cotley R., Middleboro Ave, Taunton          | 0.013 | 0.032    | 0.020     | 0.045    | 0.022     | 0.053         | 0.019                       | 0.032              |                 |
| 16      | FBR-01        | Furnace Brk., River St., E. Taunton         | 0.024 | 0.040    | 0.029     | 0.045    | 0.032     | 0.045         | 0.026                       | 0.036              |                 |
| 17      | CHU-01        | Taunton River Br, Church St., Raynham       | 0.031 | 0.075    | 0.077     | 0.102    | 0.073     | 0.098         | 0.068                       | 0.082              |                 |
| 18      | TWH-01        | Town R., Br, Hayward St., Bridgewater       | 0.057 | 0.060    | 0.095     | 0.151    | 0.120     | 0.158         | 0.096                       | 0.113              |                 |
| 19      | MAT-01        | Matfield R., Br, High St., Bridgewater      | 0.039 | 0.070    | 0.084     | 0.114    | 0.074     | 0.223         | 0.058                       | 0.104              |                 |
| 20      | NEM-01        | Nemasket R., Murdock St., Middleboro        | 0.130 | 0.036    | 0.038     | 0.101    | 0.046     | 0.077         | 0.037                       | 0.056              |                 |
|         |               |                                             |       |          |           |          |           |               |                             |                    |                 |
|         |               | Duplicate and Blank Locations by Month      |       | Duplicat | e Results | В        | ank Resul | ** Avg is for | or the water quality months |                    |                 |
| April   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1 | 0.0      | 012       | BL 1     | <0.0      | 106           | of May thro                 | ugh October        | (season AVG).   |
|         | BER-01        | Chuckamucksett Brk. Br, Berkley St.         | DUP 2 | <0.0     | 0106      | BL 2     | <0.0      | 106           | NPDES perm                  | nits use TP m      | o. avg. limits. |
| May     | FBR-01        | Furnace Brk., River St., E. Taunton         | DUP 1 | 0.0      | 068       | BL 1     | 0.0       | 191           | Based on ob                 | servations T       | RWA considers   |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2 | 0.0      | 033       | BL 2     | <0.0      | 191           | a season AV                 | G ≥ <b>0.05 mg</b> | l is concern.   |
| June    | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1 | 0.1      | 125       | BL 1     | <0.0      | 106           |                             |                    |                 |
|         | ASO-01        | Assonet R. Bridge, Rt 79                    | DUP 2 | 0.0      | 050       | BL 2     | <0.0      | 106           |                             |                    |                 |
| July    | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater | DUP 1 | 0.1      | 109       | BL 1     | <0.0      | 106           |                             |                    |                 |
|         | SEG           | Segregansett R. Br, Brook St. Dighton       | DUP 2 | 0.2      | 271       | BL 2     | 0.07      | 723           |                             |                    |                 |
| August  | TNT-02        | Taunton R. Br, Plain St., Taunton           | DUP 1 | 0.0      | 089       | BL 1     | <0.0      | 106           |                             |                    |                 |
|         | MAT-01        | Matfield R., Br, High St., Bridgewater      | DUP 2 | 0.0      | 078       | BL 2     | <0.0      | 500           |                             |                    |                 |
| Sept.   | COT-01        | Cotley R., Middleboro Ave, Taunton          | DUP 1 | 0.       | 06        | BL 1     | 0.0       | 165           |                             |                    | 1               |
|         | MIL-01        | Mill R., Ingell St., Taunton                | DUP 2 | 0.       | 06        | BL 2     | 0.0       | 149           |                             |                    |                 |
| Oct.    | NEM-01        | Nemasket R., Murdock St., Middleboro        | DUP 1 | 0.0      | 372       | BL 1     | <0.0      | 106           |                             |                    |                 |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.       | DUP 2 |          | 329       | BL 2     | <0.0      | 106           |                             |                    |                 |



| 2023 TR | WA Sampling   | Results for Enterococci (colonies/100 ml)       |       | TARGET   | FOR CON    | CERN - G    | REATER T | HAN 35 (    |                     | /100 ML (Class B & SB waters)     |  |
|---------|---------------|-------------------------------------------------|-------|----------|------------|-------------|----------|-------------|---------------------|-----------------------------------|--|
| Sample  | Site No.      | <b>River &amp; Location Description</b>         | April | May      | June       | July        | August   | Sept.       | Oct.                | 90 Day Geo Mean July to Sept      |  |
| 1       | TNT-01        | Taunton R. Br, Center St., Berkley (SB Cr. 104) | 10    | 70       | 30         | 1420        | 190      | 2000        | 50                  | 814                               |  |
| 2       | TNT-02        | Taunton R. Br, Plain St., Taunton (SB Cr. 104)  | 10    | 20       | 140        | 1580        | 110      | 2000        | 50                  | 703                               |  |
| 3       | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater     | 10    | 20       | 10         | 830         | 10       | 790         | 50                  | 187                               |  |
| 4       | CHE-01/TNT-04 | Taunton R. Br, Cherry St., Bridgewater          | 10    | 20       | 20         | 2000        | 110      | 2000        | 50                  | 761                               |  |
| 5       | ASO-01        | Assonet R. Bridge, Rt 79                        | 10    | 50       | 80         | 1140        | 170      | <b>1620</b> | 200                 | 680                               |  |
| 6       | SEG           | Segregansett R. Br, Brook St. Dighton           | 10    | 20       | 300        | 1100        | 120      | 1340        | 150                 | 561                               |  |
| 7       | BER-01        | Chuckamucksett Brk. Br, Berkley St.             | 50    | 310      | 240        | 870         | 480      | 1540        | 100                 | 863                               |  |
| 8       | TMR-01        | Three Mile R. Br, Rt 138, Somerset Ave.         | 10    | 40       | 100        | 810         | 190      | 1480        | 50                  | 611                               |  |
| 9       | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.           | 10    | 10       | <b>160</b> | 890         | 90       | 1940        | 200                 | 538                               |  |
| 10      | TMR-03        | Three Mile R. Br, Crane St., Norton             | 10    | 10       | 60         | <b>1460</b> | 260      | <b>1520</b> | 50                  | 833                               |  |
| 11      | MIL-01        | Mill R., Ingell St., Taunton                    | 10    | 50       | NR         | 520         | 200      | <b>1630</b> | 50                  | 553                               |  |
| 12      | MIL-02        | Mill R., Washington St., Taunton                | 10    | 20       | NR         | 470         | 170      | 1360        | 50                  | 477                               |  |
| 13      | MIL-03        | Mill R., Whittendon St., Taunton                | 20    | 10       | NR         | 230         | 80       | 630         | 50                  | 226                               |  |
| 14      | FORGE         | Forge R. Br, Rt 44, Raynham                     | 20    | 30       | <b>190</b> | 900         | 360      | 1080        | 200                 | 705                               |  |
| 15      | COT-01        | Cotley R., Middleboro Ave, Taunton              | 50    | 10       | 200        | 1060        | 270      | 1830        | 50                  | 806                               |  |
| 16      | FBR-01        | Furnace Brk., River St., E. Taunton             | 10    | 50       | 90         | 250         | 120      | 530         | 250                 | 251                               |  |
| 17      | CHU-01        | Taunton River Br, Church St., Raynham           | 10    | 30       | 60         | 1170        | 40       | <b>1660</b> | 100                 | 427                               |  |
| 18      | TWH-01        | Town R., Br, Hayward St., Bridgewater           | 20    | 50       | 50         | 1740        | 290      | 2000        | 50                  | 1003                              |  |
| 19      | MAT-01        | Matfield R., Br, High St., Bridgewater          | 10    | 30       | 80         | 2000        | 110      | 2000        | 50                  | 761                               |  |
| 20      | NEM-01        | Nemasket R., Murdock St., Middleboro            | 10    | 10       | 30         | 260         | 20       | 1450        | 50                  | 196                               |  |
|         |               |                                                 |       |          |            |             |          |             |                     |                                   |  |
|         |               | Duplicate and Blank Locations by Month          |       | Duplicat | e Results  | В           | ank Resu | lts         | ** Geometr          | ric Mean for any 90 days          |  |
| April   | COT-01        | Cotley R., Middleboro Ave, Taunton              | DUP 1 | 9        | 30         | BL 1        | <1       | LO          | shall not ex        | ceed 35 colonies/100ml.           |  |
|         | BER-01        | Chuckamucksett Brk. Br, Berkley St.             | DUP 2 | <        | 10         | BL 2        | <1       | LO          | No more th          | an 10% of all samples             |  |
| May     | FBR-01        | Furnace Brk., River St., E. Taunton             | DUP 1 | 1        | LO         | BL 1        | <1       | LO          | Collected sh        | nall exceed 130 CFU/100ml.        |  |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.           | DUP 2 | 1        | LO         | BL 2        | <1       | LO          | Standard ef         | fective 11/12/2021.               |  |
| June    | TNT-02        | Taunton R. Br, Plain St., Taunton               | DUP 1 | 8        | 30         | BL 1        | 1        | 0           |                     |                                   |  |
|         | ASO-01        | Assonet R. Bridge, Rt 79                        | DUP 2 | E )      | 50         | BL 2        | <1       | LO          | Results re          | eported as 2000 were              |  |
| July    | BED-01/TNT-03 | Taunton R., Rt 18, Bedford St., Bridgewater     | DUP 1 | 1        | LO         | BL 1        | <1       | LO          | reported            | as > 2000 colonies by             |  |
|         | SEG           | Segregansett R. Br, Brook St. Dighton           | DUP 2 | 1        | LO         | BL 2        | 12       | 90          | Microbac            | Microbac Lab (max that could be   |  |
| August  | TNT-02        | Taunton R. Br, Plain St., Taunton               | DUP 1 | 1        | 70         | BL 1        | <1       | LO          | measured            | measured). 2000 used to calculate |  |
|         | MAT-01        | Matfield R., Br, High St., Bridgewater          | DUP 2 | 1        | 70         | BL 2        | <1       | LO          | the geometric mean. |                                   |  |
| Sept.   | COT-01        | Cotley R., Middleboro Ave, Taunton              | DUP 1 | 19       | 950        | BL 1        | <1       | L0          |                     |                                   |  |
|         | MIL-01        | Mill R., Ingell St., Taunton                    | DUP 2 | 16       | 510        | BL 2        | <1       | LO          |                     |                                   |  |
| Oct.    | NEM-01        | Nemasket R., Murdock St., Middleboro            | DUP 1 | <        | 50         | BL 1        | <        | 1           |                     |                                   |  |
|         | TMR-02        | Three Mile R. Br, Rt 44, Cohannet St.           | DUP 2 | 5        | 50         | BL 2        | <        | 1           |                     |                                   |  |

Appendix B – Mill River Flow Data and Nutrient Loading

## Mill River Flow at Spring Street as recorded by the USGS

| <u>Year</u> | Month     | Day | Daily Mean CFS | Flow Gallons | <u>MG</u> |
|-------------|-----------|-----|----------------|--------------|-----------|
| 2007        | March     | 13  | 107            | 69,151,104   | 69.15     |
| 2007        | April     | 10  | 159            | 102,757,248  | 102.76    |
| 2007        | May       | 8   | 89             | 57,518,208   | 57.52     |
| 2007        | June      | 12  | 60             | 38,776,320   | 38.78     |
| 2007        | July      | 10  | 4.1            | 2,649,715    | 2.65      |
| 2007        | August    | 14  | 4.4            | 2,843,597    | 2.84      |
| 2007        | September | 11  | 19             | 12,279,168   | 12.28     |
| 2007        | October   | 9   | 6              | 3,877,632    | 3.88      |
| 2007        | November  | 13  | 17             | 10,986,624   | 10.99     |
| 2007        | December  | 11  | 17             | 10,986,624   | 10.99     |

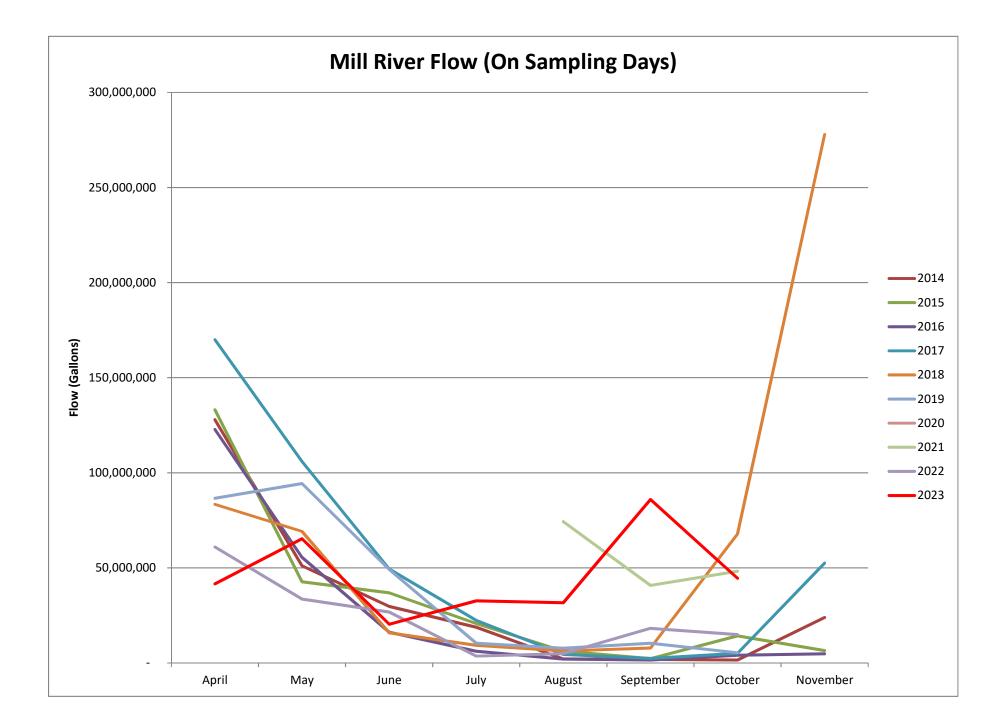
| <u>Year</u> | Month     | <u>Day</u> | Daily Mean CFS | Flow Gallons | MG     |
|-------------|-----------|------------|----------------|--------------|--------|
| 2008        | March     | 11         | 493            | 318,612,096  | 318.61 |
| 2008        | April     | 8          | 137            | 88,539,264   | 88.54  |
| 2008        | May       | 13         | 66             | 42,653,952   | 42.65  |
| 2008        | June      | 10         | 26.7           | 17,255,462   | 17.26  |
| 2008        | July      | 8          | 16.5           | 10,663,488   | 10.66  |
| 2008        | August    | 12         | 27.65          | 17,869,421   | 17.87  |
| 2008        | September | 9          | 32.45          | 20,971,526   | 20.97  |
| 2008        | October   | 7          | 77.31          | 49,963,288   | 49.96  |
| 2008        | November  | 4          | 58.71          | 37,942,629   | 37.94  |

| -           |              |            |                |              |           |
|-------------|--------------|------------|----------------|--------------|-----------|
| <u>Year</u> | <u>Month</u> | <u>Day</u> | Daily Mean CFS | Flow Gallons | <u>MG</u> |
|             |              |            |                |              |           |
| 2009        | April        | 14         | 185            | 119,560,320  | 119.56    |
| 2009        | May          |            |                | -            | -         |
| 2009        | June         | 9          | 30             | 19,388,160   | 19.39     |
| 2009        | July         | 14         | 97             | 62,688,384   | 62.69     |
| 2009        | August       | 4          | 90             | 58,164,480   | 58.16     |
| 2009        | September    | 8          | 34             | 21,973,248   | 21.97     |
| 2009        | October      | 13         | 40             | 25,850,880   | 25.85     |
| 2009        | November     | 10         | 71             | 45,885,312   | 45.89     |

| <u>Year</u> | <u>Month</u> | Day | Daily Mean CFS | Flow Gallons | MG     |
|-------------|--------------|-----|----------------|--------------|--------|
| 2010        | April        | 13  | 203            | 131,193,216  | 131.19 |
| 2010        | May          | 11  | 68             | 43,946,496   | 43.95  |
| 2010        | June         | 8   | 35             | 22,619,520   | 22.62  |
| 2010        | July         | 13  | 8.5            | 5,493,312    | 5.49   |
| 2010        | August       | 10  | 6.4            | 4,136,141    | 4.14   |
| 2010        | September    | 14  | 9.7            | 6,268,838    | 6.27   |
| 2010        | October      | 12  | 16             | 10,340,352   | 10.34  |

| 2010         | November            | 9          | 49             | 31,667,328                | 31.67           |
|--------------|---------------------|------------|----------------|---------------------------|-----------------|
| 2010         | December            | 14         | 62             | 40,068,864                | 40.07           |
|              |                     |            |                |                           |                 |
| Year         | Month               | Day        | Daily Mean CFS | Flow Gallons              | MG              |
|              |                     | -          | -              |                           |                 |
| 2011         | April               | 12         | 136            | 87,892,992                | 87.89           |
| 2011         | May                 | 10         | 122            | 78,845,184                | 78.85           |
| 2011         | June                | 14         | 99             | 63,980,928                | 63.98           |
| 2011         | July                | 12         | 39             | 25,204,608                | 25.20           |
| 2011         | August              | 9          | 96             | 62,042,112                | 62.04           |
| 2011         | September           | 13         | 277            | 179,017,344               | 179.02          |
| 2011         | October             | 11         | 103            | 66,566,016                | 66.57           |
| 2011         | November            | 8          | 160            | 103,403,520               | 103.40          |
|              |                     |            |                |                           |                 |
| <u>Year</u>  | <u>Month</u>        | Day        | Daily Mean CFS | Flow Gallons              | MG              |
|              |                     |            |                |                           |                 |
| 2012         | March               | 13         | 74             | 47,824,128                | 47.82           |
| 2012         | April               | 10         | 27             | 17,449,344                | 17.45           |
| 2012         | May                 | 5          | 60             | 38,776,320                | 38.78           |
| 2012         | June                | 12         | 56             | 36,191,232                | 36.19           |
| 2012         | July                | 10         | 19             | 12,279,168                | 12.28           |
| 2012         | August              | 14         | 45             | 29,082,240                | 29.08           |
| 2012         | September           | 11         | 17             | 10,986,624                | 10.99           |
| 2012         | October             | 9          | 16             | 10,340,352                | 10.34           |
| 2012         | November            | 13         | 91             | 58,810,752                | 58.81           |
|              | <b>N A A A</b>      |            | D :1 14 050    |                           |                 |
| <u>Year</u>  | <u>Month</u>        | <u>Day</u> | Daily Mean CFS | Flow Gallons              | <u>MG</u>       |
| 2012         | A                   | 0          | 02             |                           | 52.64           |
| 2013<br>2013 | April               | 9          | 83             | 53,640,576                | 53.64           |
|              | May                 | 14         | 41             | 26,497,152                | 26.50<br>331.54 |
| 2013<br>2013 | June                | 11<br>9    | 513            | 331,537,536<br>42,007,680 |                 |
| 2013         | July                | 9<br>13    | 65<br>82       | 42,007,880<br>52,994,304  | 42.01<br>52.99  |
| 2013         | August<br>September | 13<br>10   | 15             | 9,694,080                 | 9.69            |
| 2013         | October             | 8          | 15             | 9,694,080                 | 9.69<br>9.69    |
| 2013         | November            | 。<br>12    | 9.8            | 6,333,466                 | 6.33            |
| 2015         | November            | 12         | 5.0            | 0,555,400                 | 0.55            |
| Year         | Month               | Day        | Daily Mean CFS | Flow Gallons              | MG              |
|              | Month               | υαγ        |                |                           | 1410            |
| 2014         | April               | 8          | 198            | 127,961,856               | 127.96          |
| 2014         | May                 | 13         | 79             | 51,055,488                | 51.06           |
| 2014         | June                | 10         | 46             | 29,728,512                | 29.73           |
| 2014         | July                | 8          | 29             | 18,741,888                | 18.74           |
| 2014         | August              | 12         | 3.3            | 2,132,698                 | 2.13            |
| 2014         | September           | 9          | 2.9            | 1,874,189                 | 1.87            |
| 2014         | October             | 14         | 2.4            | 1,551,053                 | 1.55            |
| 2014         | November            | 12         | 37             | 23,912,064                | 23.91           |
| L            |                     | -          | -              | -,,                       |                 |

| Year        | <u>Month</u> | Day        | Daily Mean CFS | Flow Gallons | MG     |
|-------------|--------------|------------|----------------|--------------|--------|
|             |              |            |                |              |        |
| 2015        | April        | 14         | 206            | 133,132,032  | 133.13 |
| 2015        | May          | 12         | 66             | 42,653,952   | 42.65  |
| 2015        | June         | 9          | 57             | 36,837,504   | 36.84  |
| 2015        | July         | 14         | 32             | 20,680,704   | 20.68  |
| 2015        | August       | 18         | 9.6            | 6,204,211    | 6.20   |
| 2015        | September    | 8          | 3.5            | 2,261,952    | 2.26   |
| 2015        | October      | 13         | 22             | 14,217,984   | 14.22  |
| 2015        | November     | 10         | 10             | 6,462,720    | 6.46   |
|             |              |            |                |              |        |
| <u>Year</u> | <u>Month</u> | <u>Day</u> | Daily Mean CFS | Flow Gallons | MG     |
| 2016        | April        | 12         | 190            | 122,791,680  | 122.79 |
| 2016        | May          | 10         | 86             | 55,579,392   | 55.58  |
| 2016        | June         | 14         | 25             | 16,156,800   | 16.16  |
| 2016        | July         | 12         | 9.5            | 6,139,584    | 6.14   |
| 2016        | August       | 9          | 3.1            | 2,003,443    | 2.00   |
| 2016        | September    | 13         | 2.4            | 1,551,053    | 1.55   |
| 2016        | October      | 11         | 6.3            | 4,071,514    | 4.07   |
| 2016        | November     | 8          | 7.4            | 4,782,413    | 4.78   |
|             |              |            |                | , ,          |        |
| <u>Year</u> | <u>Month</u> | <u>Day</u> | Daily Mean CFS | Flow Gallons | MG     |
| 2017        | April        | 11         | 263            | 169,969,536  | 169.97 |
| 2017        | May          | 9          | 164            | 105,988,608  | 105.99 |
| 2017        | June         | 12         | 76.4           | 49,375,181   | 49.38  |
| 2017        | July         | 10         | 34.7           | 22,425,638   | 22.43  |
| 2017        | August       | 15         | 6.95           | 4,491,590    | 4.49   |
| 2017        | September    | 12         | 3.67           | 2,371,818    | 2.37   |
| 2017        | October      | 10         | 7.84           | 5,066,772    | 5.07   |
| 2017        | November     | 14         | 81.3           | 52,541,914   | 52.54  |
|             |              |            |                |              |        |
| <u>Year</u> | <u>Month</u> | <u>Day</u> | Daily Mean CFS | Flow Gallons | MG     |
| 2018        | April        | 10         | 129            | 83,369,088   | 83.37  |
| 2018        | May          | 8          | 107            | 69,151,104   | 69.15  |
| 2018        | June         | 13         | 24.5           | 15,833,664   | 15.83  |
| 2018        | July         | 11         | 14.4           | 9,306,317    | 9.31   |
| 2018        | August       | 7          | 9.74           | 6,294,689    | 6.29   |
| 2018        | September    | 11         | 12.2           | 7,884,518    | 7.88   |
| 2018        | October      | 9          | 105            | 67,858,560   | 67.86  |
| 2018        | November     | 13         | 430            | 277,896,960  | 277.90 |
|             |              |            |                | , , 3        |        |
|             | Month        |            |                |              |        |

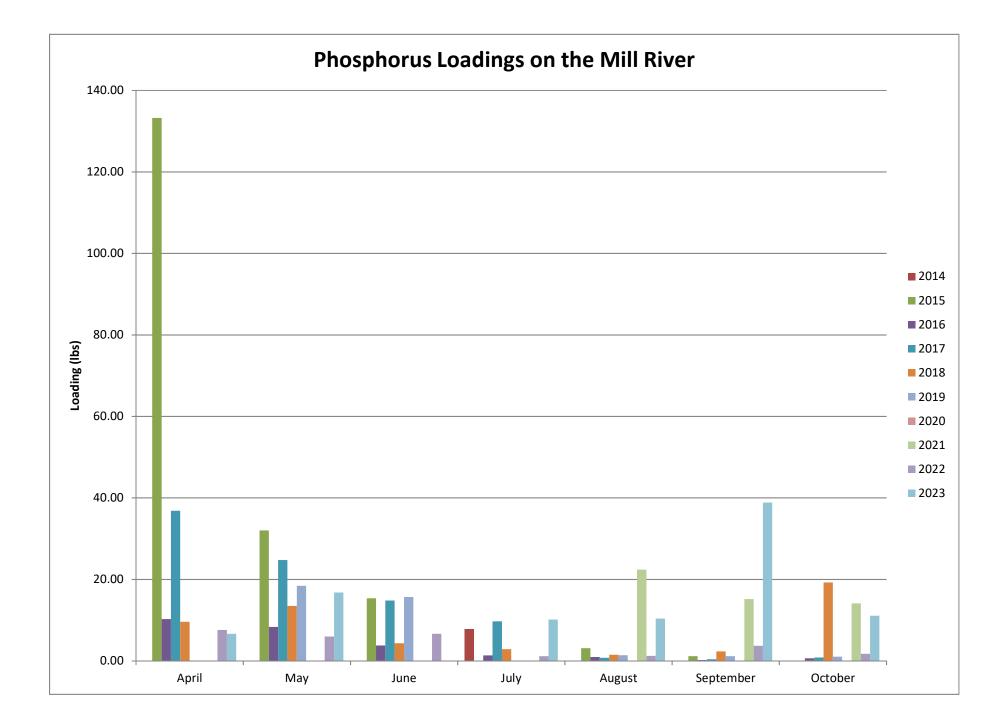

| 2019 | April     | 9  | 134 | 86,600,448 | 86.60 |
|------|-----------|----|-----|------------|-------|
| 2019 | May       | 14 | 146 | 94,355,712 | 94.36 |
| 2019 | June      | 18 | 76  | 49,116,672 | 49.12 |
| 2019 | July      | 9  | 16  | 10,340,352 | 10.34 |
| 2019 | August    | 13 | 12  | 7,755,264  | 7.76  |
| 2019 | September | 10 | 16  | 10,340,352 | 10.34 |
| 2019 | October   | 8  | 8.3 | 5,364,058  | 5.36  |

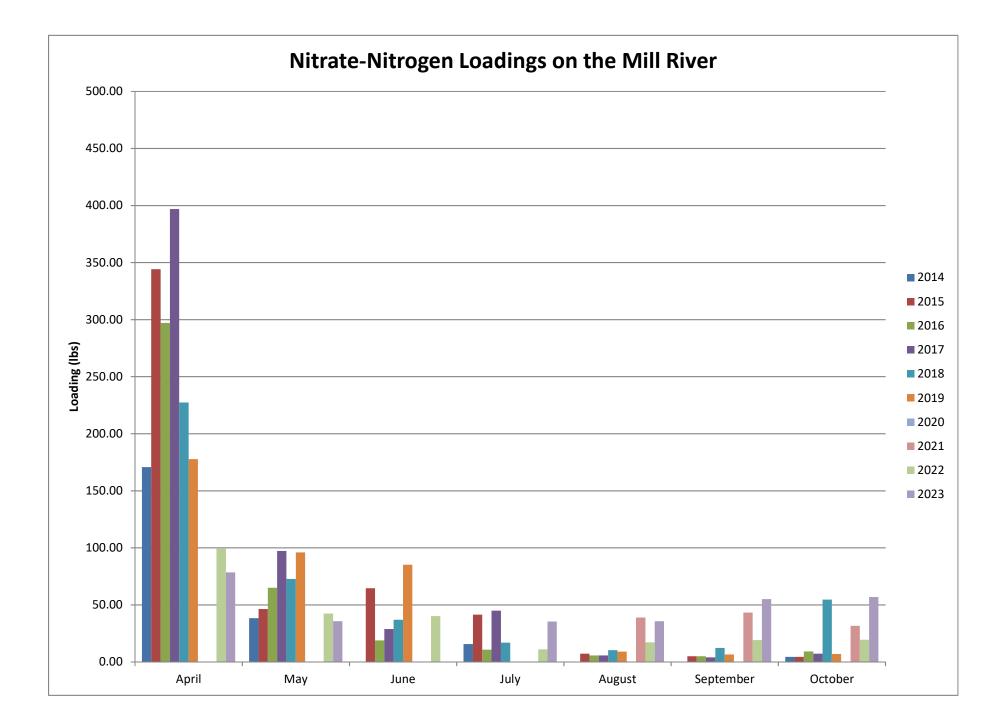
| <u>Year</u>                                  | <u>Month</u>                           | <u>Day</u> | Daily Mean CFS       | Flow Gallons | <u>MG</u> |
|----------------------------------------------|----------------------------------------|------------|----------------------|--------------|-----------|
| 2020<br>2020<br>2020<br>2020<br>2020<br>2020 | April<br>May<br>June<br>July<br>August |            | No sampling due to p | andemic      |           |
| 2020                                         | September                              |            |                      |              |           |
| 2020                                         | October                                |            |                      |              |           |

| Year | <u>Month</u> | <u>Day</u> | Daily Mean CFS       | Flow Gallons | <u>MG</u> |
|------|--------------|------------|----------------------|--------------|-----------|
| 2021 | April        |            |                      |              |           |
| 2021 | May          |            | No sampling due to p | andemic      |           |
| 2021 | June         |            |                      |              |           |
| 2021 | July         |            |                      |              |           |
| 2021 | August       | 10         | 115                  | 74,321,280   | 74.32     |
| 2021 | September    | 14         | 63.1                 | 40,779,763   | 40.78     |
| 2021 | October      | 12         | 74.6                 | 48,211,891   | 48.21     |

| Year | <u>Month</u> | Day | Daily Mean CFS | Flow Gallons | <u>MG</u> |
|------|--------------|-----|----------------|--------------|-----------|
|      | A            | 40  |                |              | 60 0 A    |
| 2022 | April        | 12  | 94.3           | 60,943,450   | 60.94     |
| 2022 | May          | 10  | 52             | 33,606,144   | 33.61     |
| 2022 | June         | 14  | 41.4           | 26,755,661   | 26.76     |
| 2022 | July         | 12  | 5.57           | 3,599,735    | 3.60      |
| 2022 | August       | 9   | 7.54           | 4,872,891    | 4.87      |
| 2022 | September    | 13  | 28.2           | 18,224,870   | 18.22     |
| 2022 | October      | 11  | 23.1           | 14,928,883   | 14.93     |

| Year | <u>Month</u> | Day | Daily Mean CFS | Flow Gallons | MG    |
|------|--------------|-----|----------------|--------------|-------|
| 2023 | April        | 11  | 64.4           | 41,619,917   | 41.62 |
| 2023 | May          | 9   | 101            | 65,273,472   | 65.27 |
| 2023 | June         | 13  | 31.5           | 20,357,568   | 20.36 |
| 2023 | July         | 11  | 50.5           | 32,636,736   | 32.64 |
| 2023 | August       | 8   | 49             | 31,667,328   | 31.67 |
| 2023 | September    | 12  | 133            | 85,954,176   | 85.95 |
| 2023 | October      | 10  | 68.9           | 44,528,141   | 44.53 |





## Mill River (MIL02) Nutrient Loading

| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs | 0.070<br>69.15<br>40.37<br>0.290<br>69.15<br>167.25<br>March<br>0.000<br>318.61<br>0.00<br>1.100 | 0.000<br>102.76<br>0.00<br>102.76<br>591.33<br>April<br>0.000 | 0.000<br>57.52<br>0.00<br>0.640<br>57.52<br>307.01<br>May | 0.060<br>38.78<br>19.40<br>0.850<br>38.78<br>274.89 | 2.65<br>0.00<br>2.65<br>0.00 | 0.070<br>2.84<br>1.66<br>1.100<br>2.84<br>26.09 | 0.060<br>12.28<br>6.14<br>1.000<br>12.28<br>102.41 | 0.070<br>3.88<br>2.26<br>0.960<br>3.88 | 0.000<br>10.99<br>0.00<br>0.880<br>10.99 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------|------------------------------------------|
| PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs                                                                                                                                     | 40.37<br>0.290<br>69.15<br>167.25<br>March<br>0.000<br>318.61<br>0.00                            | 0.00<br>0.690<br>102.76<br>591.33<br>April                    | 0.00<br>0.640<br>57.52<br>307.01                          | 19.40<br>0.850<br>38.78<br>274.89                   | 0.00                         | 1.66<br>1.100<br>2.84                           | 6.14<br>1.000<br>12.28                             | 2.26<br>0.960<br>3.88                  | 0.00<br>0.880                            |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs                                                                                                                                     | 0.290<br>69.15<br>167.25<br>March<br>0.000<br>318.61<br>0.00                                     | 0.690<br>102.76<br>591.33<br>April                            | 0.640<br>57.52<br>307.01                                  | 0.850<br>38.78<br>274.89                            | 2.65                         | 1.100<br>2.84                                   | 1.000<br>12.28                                     | 0.960<br>3.88                          | 0.880                                    |
| Flow-MGD<br>NO3 lbs<br>2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs                                                                                                                                                          | 69.15<br>167.25<br>March<br>0.000<br>318.61<br>0.00                                              | 102.76<br>591.33<br>April                                     | 57.52<br>307.01                                           | 38.78<br>274.89                                     |                              | 2.84                                            | 12.28                                              | 3.88                                   |                                          |
| NO3 lbs<br>2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 mg/l (MIL-02)<br>Flow-MGD                                                                                                                                                | 167.25<br>March<br>0.000<br>318.61<br>0.00                                                       | 591.33<br>April                                               | 307.01                                                    | 274.89                                              |                              |                                                 |                                                    |                                        | 10.99                                    |
| 2008<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                | March<br>0.000<br>318.61<br>0.00                                                                 | April                                                         |                                                           |                                                     | 0.00                         | 26.09                                           | 102.41                                             | 24.05                                  |                                          |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br><b>2009</b><br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                  | 0.000<br>318.61<br>0.00                                                                          |                                                               | May                                                       |                                                     |                              |                                                 |                                                    | 31.05                                  | 80.63                                    |
| Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                              | 318.61<br>0.00                                                                                   | 0.000                                                         |                                                           | June                                                | July                         | August                                          | September                                          | October                                | November                                 |
| Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                              | 318.61<br>0.00                                                                                   | 0.000                                                         | 0.060                                                     | 0.080                                               | 0.100                        | 0.100                                           | 0.050                                              | 0.093                                  | 0.450                                    |
| PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                          | 0.00                                                                                             | 88.54                                                         | 42.65                                                     | 17.26                                               | 10.66                        | 17.87                                           | 20.97                                              | 49.96                                  | 37.94                                    |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                     |                                                                                                  | 0.00                                                          | 42.05<br>21.34                                            | 17.20                                               | 8.89                         | 17.87                                           | 8.75                                               | 49.90<br>38.75                         | 142.40                                   |
| Flow-MGD<br>NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                          | 1 100                                                                                            | 0.00                                                          | 21.54                                                     | 11.51                                               | 0.09                         | 14.90                                           | 0.75                                               | 50.75                                  | 142.40                                   |
| NO3 lbs<br>2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                      |                                                                                                  | 0.310                                                         | 0.460                                                     | 0.600                                               | 0.640                        | 0.630                                           | 0.630                                              | 0.540                                  | 0.280                                    |
| 2009<br>PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                 | 318.61                                                                                           | 88.54                                                         | 42.65                                                     | 17.26                                               | 10.66                        | 17.87                                           | 20.97                                              | 49.96                                  | 37.94                                    |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                         | 2922.95                                                                                          | 228.91                                                        | 163.64                                                    | 86.35                                               | 56.92                        | 93.89                                           | 110.19                                             | 225.01                                 | 88.60                                    |
| Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                                              |                                                                                                  | April                                                         | Мау                                                       | June                                                | July                         | August                                          | September                                          | October                                | November                                 |
| Flow-MGD<br>PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                                              |                                                                                                  | 0.000                                                         |                                                           |                                                     | 0.090                        | 0.150                                           | 0.000                                              | 0.000                                  | 0.000                                    |
| PO4 lbs<br>NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 119.56                                                        |                                                           | 19.39                                               | 62.69                        | 58.16                                           | 21.97                                              | 25.85                                  | 45.89                                    |
| Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 0.00                                                          |                                                           |                                                     | 47.05                        | 72.76                                           | 0.00                                               | 0.00                                   | 0.00                                     |
| Flow-MGD<br>NO3 lbs                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 0.160                                                         |                                                           |                                                     | 0.080                        | 0.060                                           | 0.060                                              | 0.050                                  | 0.080                                    |
| NO3 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | 119.56                                                        |                                                           | 19.39                                               | 62.69                        | 58.16                                           | 21.97                                              | 25.85                                  | 45.89                                    |
|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | 159.54                                                        |                                                           | 19.39                                               | 41.83                        | 29.11                                           | 11.00                                              | 10.78                                  | 30.61                                    |
| 2010                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | 159.54                                                        |                                                           |                                                     | 41.05                        | 29.11                                           | 11.00                                              | 10.78                                  | 50.01                                    |
| 2010                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | April                                                         | May                                                       | June                                                | July                         | August                                          | September                                          | October                                | November                                 |
| PO4 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  | 0.000                                                         | 0.000                                                     | 0.060                                               | 0.000                        | 0.050                                           | 0.000                                              | 0.140                                  |                                          |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | 131.19                                                        | 43.95                                                     | 22.62                                               | 5.49                         | 4.14                                            | 6.27                                               | 10.34                                  | 31.67                                    |
| PO4 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | 0.00                                                          | 0.00                                                      | 11.32                                               | 0.00                         | 1.72                                            | 0.00                                               | 12.07                                  |                                          |
| NO3 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  | 0.150                                                         | 0.140                                                     | 0.120                                               | 0.230                        | 0.240                                           | 0.090                                              | 0.250                                  |                                          |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | 131.19                                                        | 43.95                                                     | 22.62                                               | 5.49                         | 4.14                                            | 6.27                                               | 10.34                                  | 31.67                                    |
| NO3 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | 164.12                                                        | 51.31                                                     | 22.64                                               | 10.54                        | 8.28                                            | 4.71                                               | 21.56                                  |                                          |
| 2011                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | April                                                         | Мау                                                       | June                                                | July                         | August                                          | September                                          | October                                | November                                 |
| PO4 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                               | 0.000                                                     | 0.000                                               | 0.060                        | 0.000                                           |                                                    |                                        |                                          |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | 87.89                                                         | 78.85                                                     | 63.98                                               | 25.20                        | 62.04                                           | 179.02                                             | 66.57                                  | 103.40                                   |
| PO4 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | 07.05                                                         | 0.00                                                      | 0.00                                                | 12.61                        | 0.00                                            | 175.02                                             | 00.57                                  | 105.40                                   |
| NO2 mg/l(Mll O2)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                                               | 0.090                                                     | 0.000                                               | 0.090                        | 0 1 2 0                                         |                                                    |                                        |                                          |
| NO3 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  | 07 00                                                         | 0.080                                                     | 0.090                                               | 0.080                        | 0.120                                           | 170.00                                             |                                        | 103 40                                   |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | 87.89                                                         | 78.85                                                     | 63.98                                               | 25.20                        | 62.04                                           | 179.02                                             | 66.57                                  | 103.40                                   |
| NO3 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                               | 52.61                                                     | 48.02                                               | 16.82                        | 62.09                                           |                                                    |                                        |                                          |
| 2012                                                                                                                                                                                                                                                                                                                                                                         | March                                                                                            | April                                                         | Мау                                                       | June                                                | July                         | August                                          | September                                          | October                                | November                                 |
| PO4 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  | 0.000                                                         |                                                           | 0.050                                               | 0.060                        | 0.080                                           | 0.080                                              | 0.060                                  |                                          |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | 17.45                                                         | 38.78                                                     | 36.19                                               | 12.28                        | 29.08                                           | 10.99                                              | 10.34                                  | 58.81                                    |
| PO4 lbs                                                                                                                                                                                                                                                                                                                                                                      | 47.82                                                                                            | 17.45                                                         | 30.70                                                     |                                                     |                              |                                                 |                                                    |                                        |                                          |
| NO3 mg/l (MIL-02)                                                                                                                                                                                                                                                                                                                                                            | 47.82                                                                                            | 0.00                                                          | 56.76                                                     | 15.09                                               | 6.14                         | 19.40                                           | 7.33                                               | 5.17                                   |                                          |
| Flow-MGD                                                                                                                                                                                                                                                                                                                                                                     | 47.82                                                                                            | 0.00                                                          | 56.76                                                     | 15.09                                               |                              |                                                 |                                                    |                                        |                                          |
| NO3 lbs                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | 0.00<br>0.200                                                 |                                                           | 15.09<br>0.070                                      | 0.290                        | 0.060                                           | 0.330                                              | 0.300                                  | <b>ፍ</b> ହ ହ1                            |
| 2013                                                                                                                                                                                                                                                                                                                                                                         | 47.82<br>47.82                                                                                   | 0.00                                                          | 38.78                                                     | 15.09                                               |                              |                                                 |                                                    |                                        | 58.81                                    |

| PO4 mg/l (MIL-02)   |          | 0.000           | 0.000          | 0.060          | 0.100         | 0.100         | 0.080         |                |                 |
|---------------------|----------|-----------------|----------------|----------------|---------------|---------------|---------------|----------------|-----------------|
| Flow-MGD            |          | 53.64           | 26.50          | 331.54         | 42.01         | 52.99         | 9.69          | 9.69           | 6.33            |
| PO4 lbs             |          | 0.00            | 0.00           | 165.90         | 35.03         | 44.20         | 6.47          |                |                 |
| NO3 mg/l (MIL-02)   |          | 0.450           | 0.360          | 0.240          | 0.320         | 0.290         | 0.290         |                |                 |
| Flow-MGD            |          | 53.64           | 26.50          | 331.54         | 42.01         | 52.99         | 9.69          | 9.69           | 6.33            |
| NO3 lbs             |          | 201.31          | 79.56          | 663.61         | 112.11        | 128.17        | 23.45         |                |                 |
| 2014                | March    | April           | May            | June           | July          | August        | September     | October        | November        |
|                     |          |                 |                |                | 0.05          |               |               | 0.00           | 0.00            |
| PO4 mg/l (MIL-02)   |          | 0.00            | 0.00           | 20.72          | 0.05          | 2.12          | 1.07          | 0.00           | 0.0             |
| Flow-MGD<br>PO4 lbs |          | 127.96<br>0.00  | 51.06<br>0.00  | 29.73          | 18.74<br>7.82 | 2.13          | 1.87          | 1.55<br>0.00   | 23.9<br>17.9    |
| NO3 mg/l (MIL-02)   |          | 0.160           | 0.090          |                | 0.100         |               |               | 0.340          | 0.06            |
| Flow-MGD            |          | 127.96          | 51.06          | 29.73          | 18.74         | 2.13          | 1.87          | 1.55           | 23.93           |
| NO3 lbs             |          | 170.75          | 38.32          |                | 15.63         |               |               | 4.40           | 11.9            |
| 2015                | March    | April           | May            | June           | July          | August        | September     | October        | November        |
| PO4 mg/l (MIL-02)   |          | 0.120           | 0.090          | 0.050          | 0.000         | 0.060         | 0.060         |                |                 |
| Flow-MGD            |          | 133.13          | 42.65          | 36.84          | 20.68         | 6.20          | 2.26          | 14.22          | 6.46            |
| PO4 lbs             |          | 133.24          | 32.02          | 15.36          | 0.00          | 3.10          | 1.13          |                |                 |
| NO3 mg/l (MIL-02)   |          | 0.310           | 0.130          | 0.210          | 0.240         | 0.140         | 0.260         |                |                 |
| Flow-MGD            |          | 133.13          | 42.65          | 36.84          | 20.68         | 6.20          | 2.26          | 14.22          | 6.46            |
| NO3 lbs             |          | 344.20          | 46.25          | 64.52          | 41.39         | 7.24          | 4.90          |                |                 |
| 2016                | March    | April           | Мау            | June           | July          | August        | September     | October        | November        |
| PO4 mg/l (MIL-02)   |          | 0.010           | 0.018          | 0.028          | 0.026         | 0.058         | 0.017         | 0.019          | 0.01            |
| Flow-MGD            |          | 122.79          | 55.58          | 16.16          | 6.14          | 2.00          | 1.55          | 4.07           | 4.78            |
| PO4 lbs             |          | 10.24           | 8.34           | 3.77           | 1.33          | 0.97          | 0.22          | 0.65           | 0.5             |
| NO3 mg/l (MIL-02)   |          | 0.290           | 0.140          | 0.140          | 0.210         | 0.340         | 0.380         | 0.270          | 0.14            |
| Flow-MGD            |          | 122.79          | 55.58          | 16.16          | 6.14          | 2.00          | 1.55          | 4.07           | 4.78            |
| NO3 lbs             |          | 296.98          | 64.89          | 18.86          | 10.75         | 5.68          | 4.92          | 9.17           | 5.5             |
| 2017                | March    | April           | May            | June           | July          | August        | September     | October        | November        |
| PO4 mg/l (MIL-02)   |          | 0.026           | 0.028          | 0.036          | 0.052         | 0.020         | 0.021         | 0.020          | 0.02            |
| Flow-MGD            |          | 169.97          | 105.99         | 49.38          | 22.43         | 4.49          | 2.37          | 5.07           | 52.54           |
| PO4 lbs             |          | 36.86           | 24.75          | 14.82          | 9.73          | 0.75          | 0.42          | 0.85           | 12.0            |
| NO3 mg/l (MIL-02)   |          | 0.280           | 0.110          | 0.070          | 0.240         | 0.150         | 0.200         | 0.170          | 0.16            |
| Flow-MGD            |          | 169.97          | 105.99         | 49.38          | 22.43         | 4.49          | 2.37          | 5.07           | 52.54           |
| NO3 lbs             |          | 396.91          | 97.23          | 28.83          | 44.89         | 5.62          | 3.96          | 7.18           | 71.4            |
| 2018                | March    | April           | May            | June           | July          | August        | September     | October        | November        |
| PO4 mg/l (MIL-02)   |          | 0.014           | 0.023          | 0.033          | 0.037         | 0.029         | 0.035         | 0.034          | 0.03            |
| Flow-MGD            |          | 83.37           | 69.15          | 15.83          | 9.31          | 6.29          | 7.88          | 67.86          | 277.90          |
| PO4 lbs             |          | 9.60            | 13.50          | 4.34           | 2.89          | 1.51          | 2.31          | 19.24          | 81.3            |
| NO3 mg/l (MIL-02)   |          | 0.327           | 0.126          | 0.28           | 0.218         | 0.195         | 0.185         | 0.0964         | 0.081           |
| Flow-MGD<br>NO3 lbs |          | 83.37<br>227.36 | 69.15<br>72.67 | 15.83<br>36.97 | 9.31<br>16.92 | 6.29<br>10.24 | 7.88<br>12.17 | 67.86<br>54.56 | 277.90<br>189.1 |
| 2019                | March    | April           |                |                | July          | August        | September     | October        | November        |
|                     | ivialCli | ·               | May            | June           |               | -             |               |                | wovernuer       |
| PO4 mg/l (MIL-02)   |          | No Sample       | 0.023          | 0.038          | No Sample     | 0.021         | 0.013         | 0.023          |                 |
| Flow-MGD            |          | 86.60           | 94.36          | 49.12          | 10.34         | 7.76          | 10.34         | 5.36           |                 |
| PO4 lbs             |          |                 | 18.41          | 15.69          |               | 1.38          | 1.13          | 1.05           |                 |

| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs |       | 0.246<br>86.60<br>177.67 | 0.122<br>94.36<br>96.01 | 0.208<br>49.12<br>85.20 | No Sample<br>10.34      | 0.140<br>7.76<br>9.06   | 0.076<br>10.34<br>6.54  | 0.154<br>5.36<br>6.89   |          |
|------------------------------------------|-------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------|
| 2020                                     | March | April                    | May                     | June                    | July                    | August                  | September               | October                 | November |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs |       | No Sample<br>-           | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          |          |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs |       | No Sample<br>-           | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          |          |
| 2021                                     | March | April                    | May                     | June                    | July                    | August                  | September               | October                 | November |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs |       | No Sample<br>-           | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | 0.036<br>74.32<br>22.38 | 0.045<br>40.78<br>15.17 | 0.035<br>48.21<br>14.11 |          |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs |       | No Sample<br>-           | No Sample<br>-          | No Sample<br>-          | No Sample<br>-          | 0.063<br>74.32<br>38.93 | 0.127<br>40.78<br>43.19 | 0.079<br>48.21<br>31.56 |          |
| 2022                                     | March | April                    | May                     | June                    | July                    | August                  | September               | October                 | November |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs |       | 0.015<br>60.94<br>7.57   | 0.021<br>33.61<br>5.97  | 0.030<br>26.76<br>6.65  | 0.038<br>3.60<br>1.15   | 0.030<br>4.87<br>1.21   | 0.024<br>18.22<br>3.71  | 0.014<br>14.93<br>1.72  |          |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs |       | 0.195<br>60.94<br>99.11  | 0.151<br>33.61<br>42.32 | 0.180<br>26.76<br>40.17 | 0.366<br>3.60<br>10.99  | 0.421<br>4.87<br>17.11  | 0.126<br>18.22<br>19.15 | 0.156<br>14.93<br>19.42 |          |
| 2023                                     | March | April                    | May                     | June                    | July                    | August                  | September               | October                 | November |
| PO4 mg/l (MIL-02)<br>Flow-MGD<br>PO4 lbs |       | 0.019<br>41.62<br>6.63   | 0.031<br>65.27<br>16.77 | No Sample<br>20.36      | 0.037<br>32.64<br>10.13 | 0.039<br>31.67<br>10.38 | 0.054<br>85.95<br>38.85 | 0.030<br>44.53<br>11.07 |          |
| NO3 mg/l (MIL-02)<br>Flow-MGD<br>NO3 lbs |       | 0.226<br>41.62<br>78.45  | 0.065<br>65.27<br>35.60 | No Sample<br>20.36      | 0.130<br>32.64<br>35.38 | 0.135<br>31.67<br>35.65 | 0.077<br>85.95<br>55.05 | 0.153<br>44.53<br>56.82 |          |



